首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A click generated quinoline derivative (1) has been synthesized and used as a fluorescent probe for sequential recognition of Cu2+ and pyrophosphate (PPi) in DMSO/H2O (1:1, v/v, HEPES 20 mM, pH = 7.4) solution. Probe 1 displays high selectivity to Cu2+ ions, and the in-situ prepared probe 1-Cu2+ exhibits high selectivity toward pyrophosphate (PPi) with emission recovery of probe 1. Therefore, 1-Cu2+ complex can be applied as a fluorescence turn-on probe for PPi with high selectivity and sensitivity.  相似文献   

2.
Carbohydrate based fluorescent sensors S1 and S2 have been developed by fluorogenic dual click chemistry and are characterized by various spectroscopic techniques. Both the fluorescent probes displayed highly selective detection of Cu2+ ions by means of fluorescence quenching. The job plot experiment suggested 1:1 complexation of probes S1 and S2 with Cu2+ ions having detection limit of 6.99 μM and 7.30 μM, respectively. The binding constants for S1-Cu2+ and S2-Cu2+ complexation were evaluated to be 3.34 × 103 M−1 and 5.93 × 103 M−1, respectively.  相似文献   

3.
A new ratiometric and exclusively selective fluorescent probe N-butyl-4,5-di[N-(phenyl)-2-(amino)-acetamino]-1,8-naphthalimide (1) was designed and synthesized on the basis of the mechanism of internal charge transfer (ICT). The probe 1 showed exclusively selectivity for CuII in the presence of a variety of other metal ions in aqueous ethanol solutions and the binding mode of probe 1 with CuII was 1:1 metal-ligand complex. Fluorescent emission spectra of probe 1 in the presence of CuII showed a 50 nm blue shift, which is from 521 nm to 471 nm. Furthermore, probe 1 shows the same fluorescent change with the CuII in living cells.  相似文献   

4.
A new thiacalix[4]arene based fluorescent sensor bearing two dansyl groups has been synthesized in cone conformation. In CH3CN:CH2Cl2 (1:1), the presence of Cu (II) induces the formation of a 1:1 metal:ligand complex, which exhibits increasing emission at 433 nm at the expense of the fluorescent emission of 1 centered at 504 nm. The detection limit of the sensor for Cu2+ is 2×10−7 mol L−1. For anion sensing, 1 shows a high selectivity for fluoride ions over other anions tested.  相似文献   

5.
New N-(pyrenylmethyl)naphtho-azacrown-5 (1) was synthesized as an ‘On-Off’ fluorescent chemosensor for Cu2+. Excited at 240 nm corresponding to the absorption of naphthalene unit (energy donor) of 1, emission at 380 nm from pyrene unit (energy acceptor) is observed, indicating that intramolecular fluorescence resonance energy transfer (FRET-On) occurs in 1. When Cu2+ is added to a solution of 1, however, the fluorescence of pyrene is strongly quenched (FRET-Off) whereas that of naphthalene group is revived. Such FRET ‘On-Off’ behavior of 1 is observed only in the case of Cu2+ binding, but not for other metal cations. The high selectivity of 1 toward Cu2+ can be potentially applied to a new kind of FRET-based chemosensor. The FRET On-Off behavior is supported by computational studies. The calculated molecular orbitals of HOMO and LUMOs suggest the excited-state interactions leading to FRET from naphthalene to pyrene in 1, but no electron density changes in 1·Cu2+ complex.  相似文献   

6.
New cavitand derivatives (1, 2) bearing four coumarin groups were synthesized, and the binding properties of these cavitands towards metal ions were examined through their fluorescent changes. Cavitand 1 effectively recognized the Cu2+ ions among the metal ions examined. The recognition of cavitand 1-Cu2+ with dicarboxlyates is also described.  相似文献   

7.
A pyrene-functional fluoroionophore, 1 was used to construct a supramolecular 1/γ-CD complex for Cu2+ recognition in water. In aqueous γ-CD solution, 1 exhibits pyrene monomer fluorescence emission at 378 nm and 397 nm, while in the presence of Cu2+, it shows a pyrene excimer emission at 452 nm with a decrease in the monomer fluorescence due to the formation of a 1:2 metal-liganded complex. Based on the response characteristics of the supramolecular complex, a fluorescent ratiometric method was performed for the determination of Cu2+ concentration in water. With the optimum conditions described, Cu2+ in aqueous solution can be determined from 1.2 × 10−6 to 4.5 × 10−4 M. The Cu2+ selectivity of the complex is excellent, and the excimer fluorescence enhancements are very smaller induced by other heavy metal and transition metal ions.  相似文献   

8.
9.
Based on a boron dipyrromethene (BODIPY) derivative containing an N, O and S tridentate ligand, a Cu2+ fluorescent probe BTCu was developed. The detection mechanism was verified as Cu2+-promoted oxidative dehydrogenation of an amine moiety, leading to a formation of a fluorescent Cu+-Schiff base complex. Free BTCu exhibited a maximum absorption wavelength at 496 nm, and a very weak maximum emission at 511 nm. Upon addition of various metals ions, it showed large fluorescence enhancement toward Cu2+ (417-fold in MeCN and 103-fold in MeCN/HEPES solution, respectively) with high selectivity. The detection limits are as low as 1.74 × 10−8 M and 4.96 × 10−8 M in the two different solutions, respectively. And BTCu could work in a wide pH range with an extraordinary low pKa of 1.21 ± 0.06. Using fluorescence microscopy, the probe was shown to be capable of penetrating into living cells and imaging intracellular Cu2+ changes.  相似文献   

10.
A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu2+ and Zn2+ in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn2+ and Cu2+ ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu2+ and Zn2+ ions, respectively. Further, we have effectively utilized the two metal ions (Cu2+ and Zn2+) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm.  相似文献   

11.
A novel fluorescent chemosensor 1 with two anthraceneisoxazolymethyl groups at the lower rim of calix[4]arene has been synthesized, which revealed a dual emission (monomer and excimer) when excited at 375 nm. This chemosensor displayed a selective fluorescence quenching only with Cu2+ ion over all other metal ions examined. When Cu2+ ion was bound to 1, the fluorescence intensities of both monomer and excimer were quenched. Furthermore, the association constant for the 1:1 complex of 1·Cu2+ was determined to be (1.58 ± 0.03) × 104 M−1.  相似文献   

12.
Zhaochao Xu  Jingnan Cui  Rong Zhang 《Tetrahedron》2006,62(43):10117-10122
The design, synthesis, and photophysical evaluation of a new naphthalimide-based fluorescent chemosensor, N-butyl-4-[di-(2-picolyl)amino]-5-(2-picolyl)amino-1,8-naphthalimide (1), were described for the detection of Zn2+ in aqueous acetonitrile solution at pH 7.0. Probe 1 showed absorption at 451 nm and a strong fluorescence emission at 537 nm (ΦF=0.33). The capture of Zn2+ by the receptor resulted in the deprotonation of the secondary amine conjugated to 1,8-naphthalimide so that the electron-donating ability of the N atom would be greatly enhanced; thus probe 1 showed a 56 nm red-shift in absorption (507 nm) and fluorescence spectra (593 nm, ΦF=0.14), respectively, from which one could sense Zn2+ ratiometrically and colorimetrically. The deprotonated complex, [(1-H)/Zn]+, was calculated at m/z 619.1800 and measured at m/z 618.9890. In contrast to these results, the emission of 1 was thoroughly quenched by Cu2+, Co2+, and Ni2+. The addition of other metal ions such as Li+, Na+, K+, Mg2+, Ca2+, Fe3+, Mn2+, Al3+, Cd2+, Hg2+, Ag+, and Pb2+ produced a nominal change in the optical properties of 1 due to their low affinity to probe 1. This means that probe 1 has a very high fluorescent imaging selectivity to Zn2+ among metal ions.  相似文献   

13.
A new thiacalix[4]arene derivative 2 of 1,3-alternate conformation possessing two pyrene groups has been synthesized and examined for its cation recognition abilities towards different cations such as lithium, sodium, potassium, nickel, zinc, cadmium, silver, mercury, lead and copper by fluorescence spectroscopy. In CH3CN/CH2Cl2 (1:1), the presence of Cu(II) induces the formation of a 1:2 ligand/metal complex, which exhibits increasing monomer emission at 376 nm at the expense of the fluorescent excimer emission of 2 centered at 476 nm. In the presence of K+, the intensity of the excimer emission increases along with the formation of a new blue shifted band at 435 nm which corresponds to a static dimer. The compound behaves as a fluorescent molecular switch upon chemical input of Cu2+ and K+.  相似文献   

14.
Yu C  Chen L  Zhang J  Li J  Liu P  Wang W  Yan B 《Talanta》2011,85(3):1627-1633
A novel Cu2+-specific “off-on” fluorescent chemosensor of naphthalimide modified rhodamine B (naphthalimide modified rhodamine B chemosensor, NRC) was designed and synthesized, based on the equilibrium between the spirolactam (non-fluorescence) and the ring-opened amide (fluorescence). The chemosensor NRC showed high Cu2+-selective fluorescence enhancement over commonly coexistent metal ions or anions in neutral aqueous media. The limit of detection (LOD) based on 3 × δblank/k was obtained as low as 0.18 μM of Cu2+, as well as an excellent linearity of 0.05-4.5 μM (R = 0.999), indicating the chemosensor of high sensitivity and wide quantitation range. And also the coordination mode with 1:1 stoichiometry was proposed between NRC and Cu2+. In addition, the effects of pH, co-existing metal ions and anions, and the reversibility were investigated in detail. It was also demonstrated that the NRC could be used as an excellent “off-on” fluorescent chemosensor for the measurement of Cu2+ in living cells with satisfying results, which further displayed its valuable applications in biological systems.  相似文献   

15.
In this Letter we present a new probe, (E)-7-(diethylamino)-2-oxo-2H-chromene-3-carbaldehyde oxime (JB), which can detect Cu2+ ions in HEPES buffer under physiological conditions. Benesi–Hildebrand and Job plots demonstrate that the stoichiometry of the Cu2+ complex formed is 2:1. Possible interference with other analytes was examined, and the decrease of the fluorescence of JB at 510 nm when it reacts with Cu2+ was shown to be highly selective. This probe accumulates in the plasmalemma of human neuroblastoma SH-SY5Y cells. Molecular dynamics (MD) simulations revealed that JB interacts with the lipid bilayer at the level of the glycerol moieties.  相似文献   

16.
A novel FRET fluorescent sensor SPAQ containing 8-aminoquinoline (donor) and spiropyran derivative (acceptor) was designed and synthesized for detecting Zn2+. The probe successfully exhibited a fluorescence turn on and ratiometric response for Zn2+ in ethanol solution with high selectivity. Upon excitation at 370 nm, the modulation of the emission intensity of SPAQ at 645 and 470 nm was achieved in the presence of Zn2+ by fluorescent resonance energy transfer (FRET) and chelation-enhanced fluorescence (CHEF) effects.  相似文献   

17.
Mono- and dinuclear Cu(II) complexes of p-tert-butylcalix[4]arene (CuL1 and CuL2, respectively) were synthesized, and their anion recognition abilities were explored. Recognition is efficiently signaled through the displacement of pyrocatechol violet bound to the receptor. For CuL2, recognition selectivity is ascribed to the tuning of the distance between donor atoms of anion guests and their ability to encompass the Cu2+-Cu2+ distance within the cleft of CuL2. In addition, the preorganization of calix[4]arene in the cone conformation and steric hindrance of two bulky tripodal amine moieties are important factors in controlling the Cu2+-Cu2+ distance. These factors caused CuL2 to recognize pyrophosphate selectively with respect to other inorganic anions in 80/20 (v/v%) MeCN/H2O solution buffered with 10 mM HEPES at pH 6.4.  相似文献   

18.
Guangjie He  Cheng He 《Tetrahedron》2010,66(51):9762-9768
A system based on FRET mechanism, comprising a coumarin donor and a rhodamine acceptor, was developed for the selective and quantitative detection of metal ions. Fluorescent chemosensors RCs, linked by 1,2-diethylamine, exhibit significant fluorescence enhancement and excellent selectivity toward Cu2+. Fluorescent probes CRB and CR6G, linked by hydrazide, function as ratiometric receptors for Cu2+ chromogentically and fluorogentically in organic-aqueous media. Furthermore, the characteristic rhodamine-based fluorescence response of CRB (excitation at 550 nm) exhibits high selectivity for Hg(II). The construction of this kind of universal FRET system opens a broader prospect for future design of ratiometric fluorescent probes.  相似文献   

19.
A new bis(8-carboxamidoquinoline) dangled binaphthol derivatized fluorescent sensor (L) was designed and synthesized. L behaves ratiometric response to Zn2+ with high selectivity accompanied by remarkable emission enhancement and red shift. The resultant L–Zn2+ complex can act as a Cu2+ sensing probe with fluorescence quenching behavior through direct Zn2+ ion replacement. Furthermore, the binding modes of Zn2+ and Cu2+ with L are elucidated by X-ray crystallographic analysis, respectively.  相似文献   

20.
We presented a ratiometric fluorescent probe dansylamide–rhodamine dyad (DANSRB) for selectively detecting Cr3+ in semi-aqueous solution. The detection mechanism relies on the fluorescent resonance energy transfer (FRET) process from the dansylamide (energy donor) to the rhodamine (energy acceptor) after the addition of Cr3+. The cell-permeability of DANSRB was confirmed by the two-photon fluorescence microscopy experiments, which demonstrated DANSRB was a good candidate for monitoring the intracellular Cr3+ level with the ratiometric fluorescent method. Combining the excellent selectivity, the ratiometric quantitative detection, and the cell-permeability, DANSRB may find a broad application in the investigation on biologically relevant species in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号