首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, a novel p-phenylcarboxylic acid BODIPY ( L ) immobilized MCM-41 based solid chemosensor material L-propylsilyl@MCM-41 ( MS4 ) was developed to detect multiple metal ions in a pure aqueous medium. The synthesized solid chemosensor material MS4 shows high sensitivity and removal ability towards trivalent (Al3+, Cr3+) and divalent (Cu2+, Hg2+) metal ions. The emission intensity of MS4 enhanced multifold selectively in the presence of trivalent (Al3+, Cr3+) metal ions and shows quenching in the presence of divalent (Cu2+, Hg2+) metal ions. The limit of detection was calculated to be in the nanomolar range with Al3+, Cr3+, Cu2+, and Hg2+ metal ions in the aqueous medium. The spectroscopic and analytical results suggest that MS4 selectively binds with Al3+ and Cr3+ through −NH functionality and with Hg2+ and Cu2+ through −COOH functionality of p-phenylcarboxylic acid BODIPY ( L ). Further, MS4 selectively removes Al3+, Cr3+, Cu2+, and Hg2+ metal ions from the aqueous media with removal efficiency of 97.28 %, 96.34 %, 87.19 %, and 95.63 %, respectively. No noticeable change in the concentration was observed for other metal ions. The recycling potential of MS4 was evaluated using EDTA for up to seven cycles with no significant reduction in sensing capability.  相似文献   

2.
A new bipyridyl derivative 1 bearing rhodamine B as visible fluorophore was designed, synthesized and characterized as a fluorescent and colorimetric sensor for metal ions. Interaction with Cu2+, Zn2+, Cd2+, Hg+, and Hg2+ ions was followed by UV/Vis and emission spectroscopy. Upon addition of these metal ions, different colorimetric and fluorescent responses were observed. “Off-on-off” (Cu2+, Zn2+, and Hg2+) and “off-on” (Hg+ and Cd2+) systems were obtained. Probe 1 was explored to mimic XOR and OR logic operations for the simultaneous detection of Hg+–Cu2+ and Hg+–Zn2+ pairs, respectively. DFT calculations were also performed to gain insight into the lowest-energy gas-phase conformation of free receptor 1 as well as the atomistic details of the coordination modes of the various metal ions.  相似文献   

3.
We develop a highly effective silole‐infiltrated photonic crystal (PC) film fluorescence sensor with high sensitivity, good selectivity and excellent reproducibility for Fe3+ and Hg2+ ions. Hexaphenylsilole (HPS) infiltrated PCs show amplified fluorescence due to the slow photon effect of PC because the emission wavelength of HPS is at the blue band edge of the selected PC’s stopband. The fluorescence can be quenched significantly by Fe3+/Hg2+ ions owing to electron transfer between HPS and metal ions. The amplified fluorescence enhances the sensitivity of detection, with a detection limit of 5 nM for Fe3+/Hg2+ ions. The sensor is negligibly responsive to other metal ions and can easily be reproduced by rinsing with pure water due to the special surface wettability of PC. As a result, a highly effective Fe3+/Hg2+ ions sensor based on HPS‐infiltrated PC film has been achieved, which will be important for effective and practical detection of heavy metal ions.  相似文献   

4.
A novel organic–inorganic silica‐based fluorescent probe was designed, synthesized and characterized by different techniques such as XRD, BET, TGA, and FT‐IR. The fluorescence properties of the probe were studied in the presence of a variety of metal‐ions in water. The results revealed that various metal‐ions negligibly vary the emission intensity of the probe except for Hg2+, which quenched the intensity dramatically. The selectivity of the probe toward Hg2+ ion was further investigated in the presence of common competing metal‐ions and the results demonstrated the high selectivity of the probe toward Hg2+ ion. The fluorescence emission of the probe was also studied as a function of the concentration of Hg2+ ion. A nanomolar limit of detection was estimated for Hg2+, indicating a high sensitivity. Furthermore, the probe showed INHIBIT‐type logic behavior with Hg2+ and H+ as inputs. Also, the optimum pH range was studied in addition to reversibility and real world applicability of the probe.  相似文献   

5.
Bis(pyrene) derivative of diazatetrathia-crown ether has been prepared and its Hg2+-selective fluoroionophoric properties were investigated. The compound showed a pronounced Hg2+-selectivity and other metal ions except for Cu2+ showed almost no discernible responses. The Hg2+-selectivity of the compound was also confirmed by the competitive experiments performed in the presence of physiologically important metal ions and the detection limit was found to be 1.6 × 10−6 M. The prominent selective and efficient fluorescence quenching behavior could be utilized as a new chemosensing system for the analysis of toxic Hg2+ ions in aqueous environment.  相似文献   

6.
Herein, a simple electrochemical sensor was fabricated for sensing Hg2+ ions by using electrochemically reduced p‐nitrobenzoic acid molecules modified (ERpNBA) glassy carbon electrode (GCE). The modified electrode was applied for the determination of Hg2+ ions by using differential pulse anodic stripping voltammetry (DPASV). Experimental parameters such as concentration of p‐nitrobenzoic acid used for electrode modification, pH, accumulation time and deposition potential used for the determination of Hg2+ ions were optimized. The strong interaction between the Hg2+ ions and the lone pair of electrons on the nitrogen atoms of ERpNBA molecules leads to highly selective adsorption of Hg2+ ions on the modified electrode. Under the optimum experimental conditions, the sensor showed higher sensitivity and very low detection limit for Hg2+ ions than other metal ions such as Cd2+, Pb2+ and Zn2+ ions. The LOD for Hg2+ ions was 240 pM which is below the guideline value given by the World Health Organization and the earlier reports.  相似文献   

7.
Azo 8-hydroxyquinoline benzoate (2) was synthesized and studied to detect metal ions. Distinct color change was found for compound 2 in the presence of transition metal ions Hg2+ or Cu2+ in CH3CN, respectively, which makes it possible for distinguishing Hg2+ and Cu2+ from other metal ions by the ‘naked eye’.  相似文献   

8.
New dioxocyclam derivatives bearing two anthracene fluorophores were prepared, and their fluoroionophoric properties toward transition metal ions were investigated. Chemosensor 2 having anthrylacetamide moieties exhibited pronounced Hg2+- and Cu2+-selective fluoroionophoric properties in aqueous acetonitrile solution over other representative transition metal ions, as well as alkali and alkaline earth metal ions. Chemosensor 2 also exhibited Hg2+ and Cu2+ selectivity under competitive conditions in the presence of physiologically and environmentally important metal ions. The detection limits for the sensing of Hg2+ and Cu2+ ions were 7.8 × 10−6 and 1.5 × 10−6 M, respectively, in aqueous 95% acetonitrile solution.  相似文献   

9.
Transition metal ions (Pb2+, Zn2+, Cd2+, Co2+, Mn2+, Cu2+, Ni2+, Hg2+, Ag+, Fe3+) in water are used to quench emission of 2-(6-oxido-6H-dibenz 〈c,e〉 〈1,2〉 oxaphosphorin-6-yl)-1,4-phenylene-bis(p-pentyloxylbenzoate)s (MD5) with aggregation-induced emission enhancement (AIEE) in water-acetonitrile (AN) mixture (80:20 by volume). Among all metal ions, Fe3+ exhibits the highest quenching efficiency on AIEE of MD5 even when the concentration of Fe3+ is lower than 1×10−6 mol/L. The quenching efficiency of Hg2+ is lower than that of Fe3+ at the same concentration, though MD5 is used to detect Hg2+ efficiently, too. To other metal ions, low quenching efficiency has few relations with a wider concentration range. The UV absorbance spectra show only red shift of absorbance wavelength in the presence of Hg2+ and Fe3+, which indicates a salt-induced Jaggregation. SEM photos reveal larger aggregation and morphological change of nanoparticles of MD5 in water containing Hg2+ and Fe3+, which reduce the surface area of MD5 emission for further aggregation. The selective quenching effect of transition metal ions to emission of MD5 has a potential application in chemical sensors of some metal ions.  相似文献   

10.
There is widespread interest in non‐covalent bonding and weak interactions, such as electrostatic interactions, hydrogen bonding, solvophobic/hydrophobic interactions, metal–metal interactions, and π–π stacking, to tune the molecular assembly of planar π‐conjugated organic and inorganic molecules. Inspired by the roles of metal–aromatic interaction in biological systems, such as in ion channels and metalloproteins, herein, we report the first example of the use of Hg2+–aromatic interactions to selectively control the assembly and disassembly of zinc–salen complexes in aqueous media; moreover, this process exhibited significant “turn on” fluorescent properties. UV/Vis and fluorescence spectroscopic analysis of the titration of Hg2+ ions versus complex ZnL1 revealed that the higher binding affinity of Hg2+ ions (compared to 13 other metal ions) was ascribed to specific interactions between the Hg2+ ions and the phenyl rings of ZnL1 ; this result was also confirmed by 1H NMR spectroscopy and HRMS (ESI). Further evidence for this type of interaction was obtained from the reaction of small‐molecule analogue L1 with Hg2+ ions, which demonstrates the proximity of the N‐alkyl group to the aromatic protons during Hg2+‐ion binding, which led to the consequential H/D exchange reaction with D2O. DFT modeling of such interactions between the Hg2+ ions and the phenyl rings afforded calculated distances between the C and Hg atoms (2.29 Å) that were indicative of C? Hg bond‐formation, under the direction of the N atom of the morpholine ring. The unusual coordination of Hg2+ ions to the phenyl ring of the metallosalen complexes not only strengthened the binding ability but also increased the steric effect to promote the disassembly of ZnL1 in aqueous media.  相似文献   

11.
A new fluorescent sensor based on the BODIPY fluorophore and the carboxyl-thiol metal bonding receptor for Hg2+ was designed and synthesized. The sensor is highly selective for Hg2+ (about 630-fold fluorescence enhancement) over relevant competing metal ions, sensitive to ppb levels of Hg2+ (with detection limit of 5.7?nM), and fast response toward Hg2+ (within 30?s) in aqueous solution.  相似文献   

12.
The heavy metal mercury (Hg) is a threat to the health of people and wildlife in many environments. Among various chemical forms, Hg2+ salts are usually more toxic than their counterparts because of their greater solubility in water; thus, they are more readily absorbed from the gastrointestinal tract into circulation. Therefore, new chemical receptors for detecting Hg2+ ions in circulation are needed. In this study, we developed a rhodamine-based turn-on fluorescence probe to monitor Hg2+ in aqueous solution and in blood of mice with toxicosis. The chemodosimeter responds to Hg2+ ions stoichiometrically, rapidly, and irreversibly at room temperature as a result of a chemical reaction that produces strongly fluorescent oxadiazole. The new fluorescent probe shows good fluorescence response, with high sensitivity and selectivity, toward Hg2+ ions in aqueous solution and in blood from mice with toxicosis and facilitates the naked-eye detection of Hg2+ ions.  相似文献   

13.
A novel reaction-based probe for fluorescence signaling of Hg2+ ions was developed. Selective Hg2+-induced cleavage of a dithioacetal resulting in switching from pyrene excimer to monomer emission was used for the signaling. Changes in excimer and monomer emissions of pyrene were readily employed for ratiometric signaling of Hg2+ ions in aqueous acetonitrile. Selective signaling of Hg2+ ions over other common metal ions was observed with a detection limit of 9.8 × 10−7 M.  相似文献   

14.
Heavy metal ions such as Hg and Pb are hazardous due to very high toxicity, mobility, and ability to accumulate through the food chain or atmosphere in the environment system. Therefore, ultrasensitive determination of mercury and lead is important to provide an evaluation index of ions in aqueous environment. This paper describes the investigation of surface modified quantum dots (QDs) as a sensing receptor for Hg2+ and Pb2+ ion detection by optical approach. Water-soluble L-cysteine-capped CdS QDs have been synthesized in aqueous medium. These functionalized nanoparticles were used as a fluorescence sensor for Hg2+ and Pb2+ ions, involved in the fluorescence quenching. The effect of foreign ions on the intensity of CdS QDs showed a low interference response toward other metal ions except Cu2+ and Fe2+ ions. The limit of detection (LOD) of this system is found to be 1.0 and 3.0 nM for Hg2+ and Pb2+ ions, respectively.  相似文献   

15.
李广科a  b  刘敏a  b  杨国强a  陈传峰  a  黄志镗  a 《中国化学》2008,26(8):1440-1446
我们方便地合成了上沿修饰四丹磺酰胺基团的杯[4]芳烃衍生物1,发现该化合物在含50%水的乙腈中显示出对汞离子高选择性和灵敏性的识别作用,竞争实验表明多数金属离子对其检测干扰较小。机理研究结果表明荧光萃灭源于由丹磺酰胺基团到汞离子的光致电子转移过程。另外,通过研究1和1-Hg2+的荧光衰减实验,以及对比双丹磺酰胺杯[4]芳烃2和单丹磺酰胺杯[4]芳烃3对汞离子的识别作用,发现化合物1的四丹磺酰胺基团具有很好的预组织和协同作用。化合物1对汞离子的检测限为3.41×10-6 mol·L-1,这可以使1成为一个潜在的汞离子荧光化学传感器。  相似文献   

16.
Diametrically disubstituted bis(anthrylmethyl) derivative of 1,8-dimethylcyclam exhibited pronounced Hg2+- and Cd2+-selective fluorogenic behaviors in aqueous acetonitrile solution. A distinctive OFF-ON type signaling was observed for Hg2+ and Cd2+ ions in aqueous acetonitrile (CH3CN-H2O = 90:10, v/v) solution, while a selective ON-OFF type switching behavior toward Hg2+ ions was observed in solution having higher water content (CH3CN-H2O = 50:50, v/v). The detection limit for the analysis of Hg2+ ions in 50% aqueous acetonitrile was found to be 3.8 × 10−6 M. The selective OR logic gate behavior of the prepared compound toward two toxic heavy metal ions of Hg2+ and Cd2+ ions in CH3CN-H2O (90:10, v/v) suggests the possibility as a new chemosensing device for the two important target metal ions.  相似文献   

17.
In this study, a nanocomposite consisting of three-dimensional reduced graphene oxide (3D-rGO) and plasma-polymerized propargylamine (3D-rGO@PpPG) was prepared and used as a highly sensitive and selective DNA sensor for detecting Hg2+. Given the high density of amino groups in the resultant 3D-rGO@PpPG nanocomposite, thymine-rich and Hg2+-targeted DNA was preferentially immobilized on the fabricated sensor surface via the strong electrostatic interaction between DNA strands and the amino-functionalized nanocomposites, followed by detecting Hg2+ through T–Hg2+–T coordination chemistry between DNA and Hg2+. The results of electrochemical measurements revealed that the anchored amount of DNA strands anchored on the 3D-rGO@PpPG nanofilm surface affects the determination of Hg2+ in aqueous solution. It showed high sensitivity and selectivity toward Hg2+ within concentrations ranging from 0.1 to 200 nM and displayed a low detection limit of 0.02 nM. The new strategy proposed also provides high selectivity of Hg2+ against other interfering metal ions, good stability, and repeatability. The excellent applicability of the developed sensor confirms the potential use of plasma-modified nanofilms for the detection of heavy metal ions in real environmental samples and water.  相似文献   

18.
Heavy metals have caused a lot of serious problems to human beings. A reusable, highly sensitive metal sensor based on polyurethane membrane, which can detect and remove Hg2+ ions, was prepared and tested in this work. A sensor with hydroxyl (?OH) group was grafted to polyurethane, and the heavy metal sensitive membrane was synthesized accordingly. Upon addition of Hg2+ ion solution to the as‐prepared membrane, the color change occurred instantly. Moreover, different colors appeared with different concentration of the Hg2+ ions, which could make the membrane be employed as a heavy metal “test paper”. In addition, the membrane sensor could be recycled after the interaction with Hg2+ ions by treating the used membrane with dilute ethylenediaminetetraacetic acid 2Na solution. This efficient and easily prepared membrane‐based sensor has a promising application in environmental science. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Two new acridine derivatives bearing azacrown or azathiacrown ligand were synthesized as fluorescent chemosensors for Hg2+ and Cd2+ in aqueous solution. Compounds 1 and 2 displayed selective CHEF (chelation enhanced fluorescence) effects with Hg2+ or Cd2+ among the metal ions examined. The practical use of these probes was demonstrated by their applications to the detection of Hg2+ and Cd2+ ions in mammalian cells.  相似文献   

20.
2-Amino-6-methyl-4-phenyl-nicotinonitrile 1, a 2-aminopyridine-based fluorescent compound, was found to be a fluorescent chemosensor for the detection of Fe3+ and Hg2+ ions over a number of other metal ions. Compound 1 was synthesized in one step using a multicomponent reaction, and characterized using common spectroscopic tools. During Fe3+/Hg2+ sensing the compound 1 followed a ‘switch-off’ mechanism. Further, compound 1 could sense Fe3+ over Hg2+ by its distinct absorption and fluorescence quenching behaviors. 1:1 complex formation of 1 with Fe3+ and Hg2+ was clearly understood from Job’s plot. The present work brings additional evidence on the importance of multicomponent reactions which could lead to the development of fluorescence chemosensor in one step for the selective detection of biologically important metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号