首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have demonstrated spatial frequency selective reconstruction (SFSR) of two-dimensional optical images by using functionalized mesogenic composites possessing real-time holographic capability. The two-dimensional optical image was Fourier transformed by a lens and part of the spatial frequency was brought into interference with the reference beam in the Raman-Nath regime. The SFSR images were observed in the self-diffraction patterns and we calculated the expected reconstructed images which were in good agreement with the observed images.  相似文献   

2.
We have investigated optical properties of single gold nanorods by using an apertured-type scanning near-field optical microscope. Near-field transmission spectrum of single gold nanorod shows several longitudinal surface plasmon resonances. Transmission images observed at these resonance wavelengths show oscillating pattern along the long axis of the nanorod. The number of oscillation increases with decrement of observing wavelength. These spatial characteristics were well reproduced by calculated local density-of-states maps and were attributed to spatial characteristics of plasmon modes inside the nanorods. Dispersion relation for plasmons in gold nanorods was obtained by plotting the resonance frequencies of the plasmon modes versus the wave vectors obtained from the transmission images.  相似文献   

3.
The near-field surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) images of tris(bipyridine)ruthenium(II) adsorbed on a silver nanoparticles-coated substrate were obtained with a scanning near-field optical microscope (SNOM, or near-field scanning optical microscopy, NSOM) using a cantilever tip. In comparison with the most widely used fiber tip for SNOM, the cantilever tip has higher optical throughput and better thermal stability, making it more suitable for detecting the extremely low Raman signal in the near-field spectroscopic investigations. Our preliminary results show that the near-field SERS with the higher spatial resolution can provide richer fingerprint information than the far-field SERS. A comparison of the two types of images shows that there are more SERS than SEF hot spots, and the two types of hot spots do not overlap. More surprisingly, the near-field SERS spectra differ from the far-field SERS spectra obtained on the same sample in the band frequency and relative intensities of some major Raman bands, and some IR-active bands were observed with the near-field mode. These results are explained mainly by the electric field gradient effect and heterogeneous polarization character that operate only in the near-field SERS.  相似文献   

4.
An imaging spectrograph equipped with a CCD detector was employed to measure two-dimensional emission images from a glow discharge plasma in atomic emission spectrometry. The emission images at Zn I 334.50 nm for a zinc sample and at Cu I 324.75 nm for a copper sample could be obtained. Their emission intensities were not uniform in the radial direction of the plasma region but became weaker at larger distance from the central zone. The two-dimensional distribution would result from a spatial variation in the excitation efficiency of the plasma and thus provide useful information for understanding the excitation processes occurring in the plasma.  相似文献   

5.
The spatial distribution analysis of emission signals from a laser-induced plasma can provide information on the excitation mechanism as well as on the optimization of the analytical conditions when it is employed as a sampling and excitation source in optical emission spectrometry. A two-dimensionally imaging spectrometer system was employed to measure spatial variations in the emission intensities of a copper sample and plasma gases when krypton, argon, or helium was employed under various pressure conditions. The emission image of the Cu I 324.75-nm line consists of a breakdown spot and a plasma plume, where the breakdown zone expands toward the surrounding gas. The shape and the intensities of the plasma plume are strongly dependent on the kind and pressure of the plasma gas, while those of the breakdown zone are less influenced by these experimental parameters. This effect can be explained by the difference in the cross-section of collisions between krypton, argon, and helium. The signal-to-background ratio of the Cu I 324.75-nm line was estimated over two-dimensional images to determine the optimum position for analytical applications.  相似文献   

6.
The concentration and vesicle size-controlled collisions of single molecules with target biological assemblies allow sub-diffraction limited optical images to be obtained that are not subject to the usual photobleaching problems with single molecule experiments. For example, single molecules of the probe Nile Red in aqueous solution emit a burst of fluorescence when they collide with a 50 nm hydrophobic vesicle situated on the surface in the laser focus. The bimolecular kinetics of the bursts is defined by their on- and off-time distribution functions which depend on the concentration and diffusion of the probe and the vesicle size. The mean burst frequency changes much more sharply than does the fluorescence intensity when a vesicle is raster scanned through the laser focus. This sharpness allows the spatial resolution of two objects to be improved and separations less than the diffraction limited resolution of the conventional optical microscope to be measured. The principle of this method of trajectory time distribution optical microscopy (TTDOM) could be used in a far field optical microscopic system with a resolution of several nanometers.  相似文献   

7.
Optical measurements performed through an iCCD camera equipped with an optical bandpass filter have been carried out on a pulsed dc glow discharge (GD) in order to study the spatial, temporal, and current dependency of the 1s5 (3P2) Ar metastable (Ar*) species. For the spatial and temporal study the pressure was held constant at 1 hPa. The combination of the iCCD camera with the bandpass filter has allowed to acquire time-resolved images of the Ar* in a spatial region between the cathode and the anode. Those measurements have been performed through optical emission and absorption spectroscopy and have shown that the Ar* during the powering phase of the pulsed GD maximize in a spatial region close to the cathode (ca. 1 mm) and that at the end of the pulsed GD, in the so-called afterglow region, the Ar* maximize in a spatial region far from the cathode (between 6–8 mm). Then they reach their maximum intensity within the first 100 μs and decay within 200–250 μs, both after the end of the GD. It has also been observed that the Ar* species increase by increasing current.  相似文献   

8.
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations. Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures  相似文献   

9.
Novel chromophores Ch1–8 based verbenone bridge with various strong donors and acceptors were designed for applications in nonlinear optics, and the nonlinear optical (NLO) properties of those verbenone-type chromophores were systematically investigated using the bond length alteration (BLA) theory, two states model (TSM) and sum-over-states (SOS) model. The results show that several verbenone-based chromophores possess remarkably large molecular second-order hyperpolarizabilities, which is due to its electron distribution close to the cyanine limit, the appropriate strength of acceptor, rather large change in dipole moment and low excitation energy. Computed hyperpolarizability (βtot) of Ch6 also approach an outstanding 2922 × 10−30 esu in TFE. The hyperpolarizability density analyses and two states model (TSM) were carried out to make a further insight into the origination of molecular nonlinearity of this unique system, suggesting that tuning structure of acceptor and polarity of the medium have great influence on the second-order nonlinear optical properties. More importantly, chromophores Ch1–Ch8 exhibited distinct features in two-dimensional second order NLO responses, and the strong electro-optical Pockels effect and optical rectification responses. The excellent electronic sum frequency generations (SFG) and difference frequency generations (DFG) effect are observed in these verbenone-type chromophores. These chromophores have a possibility to be appealing second-order nonlinear optical (NLO) materials, data storage materials and DSSCs materials from the standpoint of large β values, high LHE, and excellent two-dimensional second order NLO responses.  相似文献   

10.
meso-Tetra(phenyl-p-phosphonate) porphyrin forms rigid and well-separated fibers of monomolecular thickness (2.8 nm) and lengths of several micrometers on mica at pH 13 (octasodium salt). The formation of these fibers could be observed directly by tapping mode scanning force microscopy (SFM) and was induced by capillary forces. Normal height images or images with a topographical inversion were observed depending on the distance of the SFM tip. Amplitude-distance curves indicated that a stable meniscus was formed on hydrophilic surface areas below a tip-sample separation of 20 nm. The meniscus let the original nanorods appear as ditches in the mica surface and enabled rearrangements. A partly protonated form of the same porphyrin (pH 11.5) gave rows of flat-lying porphyrins on graphite, which appear with molecular resolution in SFM images as well as two-dimensional platelets of monomolecular thickness.  相似文献   

11.
The relation between probe size and spatial resolution of backscattered electron (BSE) images was studied. In addition, the effect of the accelerating voltage, the current intensity and the sample geometry and composition were analyzed. An image synthesis method was developed to generate the images from backscattered electron coefficients obtained from Monte Carlo simulations. Spatial resolutions of simulated images were determined with the SMART-J method, which is based on the Fourier transform of the image. The resolution can be improved by either increasing the signal or decreasing the noise of the backscattered electron image. The analyses demonstrate that using a probe size smaller than the size of the observed object (sample features) does not improve the spatial resolution. For a probe size larger than the feature size, the spatial resolution is proportional to the probe size.  相似文献   

12.
Sum frequency vibrational spectroscopy is utilized as an imaging technique to distinguish and compare the local response of carbon monoxide (CO) covered platinum (Pt) polycrystalline surface versus the average response of the investigated area. The Pt electrode was prepared using the standard method and was exposed to approximately 1 atm of CO(g). SFG images and vibrational spectra were obtained where the contrast is based on the intrinsic nature of each peak in the CO vibrational spectrum. The illustration of the images and the chemical maps of CO on the platinum surface showed the distribution of the CO across the observed area. The results obtained by comparing the local and the average response confirmed the spatial distributions of the CO on the platinum sample which are due to several reasons such as dipole-dipole coupling and surface coverage. This finding has a significant contribution toward recognizing that surfaces usually considered homogeneous may in fact be quite heterogeneous.  相似文献   

13.
This paper describes a novel measurement technique for in-situ monitoring of the degradation processes of coated C/C composites (carbon fiber-reinforced carbon composites) in combusting fields. The samples tested in this experiment were C/C composites with double coating layers of SiC and glass materials doped with Ca and/or Mg as tracer elements. These samples were exposed in an C2H2/air flame emitted the diatomic molecules, and the light from the Mg-Ca hollow cathode lamp passed through the flame around the sample. The spectrally and spatially resolved images of emission were observed with a spectro CCD camera developed by our group. In this work, two-dimensional atomic absorption spectrometry by using the spectro CCD camera was applied to in-situ monitor the degradation processes of each coating layer and the substrate. The results indicated that the temporal changes in the spatial distribution of atomic absorption caused by Ca and Mg atoms proved to be a good measure for in-situ monitoring of the degradation processes of coated C/C composites in a high temperature flame.  相似文献   

14.
The ordering of polystyrene colloidal particles floating on the surface of glycol film, forming a two-dimensional system,was studied via an optical microscope. We have observed that the interfacial colloidal particles crystallized to form a two-dimensional triangular lattice with lots of point defects and grain boundaries. The interactions between the interfacial colloidal particles are also analyzed.  相似文献   

15.
We have developed a near-infrared spectroscopy system for low-resolution regional imaging of the brain. Our regional imager employs two intensity-modulated (frequency-domain) diode lasers operating at 779 and 834 nm, respectively, in order to produce macroscopic waves of diffusing photons. The interaction of these diffusive waves with tissue depends on laser modulation frequency, laser wavelength and the optical properties of the sample tissue volume. The lasers can be modulated over a range of frequencies from 50 to 400 MHz. Light is coupled to and from the head using a pad that has 12 source and 4 detector positions within an area of approximately 40 cm2. The pad can be moved to different positions on the head. Measurements from different source-detector combinations enable reconstruction of low-resolution images of the tissue volume beneath the pad. For example, we have made two-dimensional back-projection images of model systems in order to demonstrate the capabilities of the regional imager. We also present preliminary results from initial clinical studies at the Children's Hospital of Philadelphia.  相似文献   

16.
John L Hall 《Chemphyschem》2006,7(11):2242-2258
Four long-running currents in laser technology met and merged in 1999-2000. Two of these were the quest toward a stable repetitive sequence of ever-shorter optical pulses and, on the other hand, the quest for the most time-stable, unvarying optical frequency possible. The marriage of ultrafast- and ultrastable lasers was brokered mainly by two international teams and became exciting when a special "designer" microstructure optical fiber was shown to be nonlinear enough to produce "white light" from the femtosecond laser pulses, such that the output spectrum embraced a full optical octave. Then, for the first time, one could realize an optical frequency interval equal to the comb's lowest frequency, and count out this interval as a multiple of the repetition rate of the femtosecond pulse laser. This "gear-box" connection between the radiofrequency standard and any/all optical frequency standards came just as sensitivity-enhancing ideas were maturing. The four-way union empowered an explosion of accurate frequency measurement results in the standards field and prepared the way for refined tests of some of our cherished physical principles, such as the time-stability of some of the basic numbers in physics (e.g. the "fine-structure" constant, the speed of light, certain atomic mass ratios), and the equivalence of time-keeping by clocks based on different physics. The stable laser technology also allows time-synchronization between two independent femtosecond lasers so exact they can be made to appear as if the source were a single laser. By improving pump-probe experiments, one important application will be in bond-specific spatial scanning of biological samples. This next decade in optical physics should be a blast!  相似文献   

17.
Image fusion allows for the combination of an image containing chemical information but low spatial resolution with a high‐spatial resolution image having little to no chemical information. The resulting hybrid image retains all the information from the chemically relevant original image, with improved spatial resolution allowing for visual inspection of the spatial correlations. In this research, images were obtained from two sample test grids: one of a copper electron microscope grid with a letter ‘A’ in the center (referred to below as the ‘A‐grid’), and the other a Tantalum and Silicon test grid from Cameca that had an inscribed letter ‘C’ (referred to below as the ‘Cameca grid’). These were obtained using scanning electron microscopy (SEM) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Image fusion was implemented with the Munechika algorithm. The edge resolution of the resulting hybrid image was calculated compared with the edge resolution obtained for both the individual ToF‐SIMS and SEM images. The challenges of combining complimentary datasets from different instrumental analytical methods are discussed as well as the advantages of having a hybrid image. The distance across the edge for hybrid images of the A‐Grid and the Cameca grid were determined to be 21 µm and 8 µm, respectively. When these values were compared to the original ToF‐SIMS, SEM and optical microscopy measurements, the fused image had a spatial resolution nearly equal to that obtained in the SEM image for both samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The formation and the optical features of two-dimensional aggregates formed by DNA-directed immobilization and cross-linking of bifunctional DNA–gold nanoparticles at flat gold substrates are analyzed. The samples are structurally characterized by atomic force microscopy to evaluate the particle size, the particle densities, and the degree of aggregation. The optical characteristics determined by UV/visible measurements are correlated with the structural features observed.
Ulrich SimonEmail:
  相似文献   

19.
The analysis of line shapes in two-dimensional optical and infrared spectroscopies is a powerful approach to characterizing the dynamics of molecules in the condensed phase. Changes in line shape from diagonally elongated to symmetric as a function of waiting time arise from evolution of the transition frequency. We describe a number of quantitative measures of frequency fluctuations and spectral diffusion through the analysis of two-dimensional (2D) line shapes. These metrics are identical to the system's frequency correlation function and independent of population relaxation in the limit of a short time approximation for the 2D response. We also test the broader applicability of these expressions for analyzing three-level vibrational systems and experiments with finite pulses.  相似文献   

20.
Electron micrographs of parallel arrays of negatively stained ramie cellulose protofibrils were analyzed using the two-dimensional digital autocorrelation function (ACF). The method is based upon the statistical analysis of images in real space. The ACF shows strong parallel streaks of high correlation, and the lateral distance between adjacent streaks allows the mean interfibrillar distance to be estimated as 3.7 nm. The intensity profile along the streaks shows a weak modulation with peaks occurring at integral multiples of 3 or 6 nm. These results provide direct evidence that there is a regular axial texture in the protofibrils, and corroborate the conclusions previously drawn from optical diffraction analysis. Using the difference vectors found in the ACF it has been possible to reduce the picture noise level by linear integration, thereby obtaining an enhanced image. A preliminary result obtained in this way suggests that the projected protofibril morphology associated with the observed axial periodicity is a ribbon-like zigzag structure. Possible applications of the method for future work are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号