首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermoelastoplastic fracture mechanics problem of a thick-walled cylinder subjected to internal pressure and a nonuniform temperature field is solved by the method of elastic solutions combined with the finite-element method. The correctness of the solution is provided by using the Barenblatt crack model, in which the stress and strain fields are regular. The elastoplastic problem of a cracked cylinder subjected to internal pressure and a nonuniform temperature field are solved. The calculation results are compared with available data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 173–183, May–June, 2008.  相似文献   

2.
The axisymmetric thermoelastic state of an Isotropic, circular, infinite cylinder with an external annular groove is considered. It is assumed that uniformly distributed heat sources act on part of the slot surface, while the side surface of the cylinder is heat insulated. A formula is obtained to determine the normal stresses in the plane of the slot.Translated from Zhurnal Prikladnoi. Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 154–158, November–December, 1971.  相似文献   

3.
The boundary collocation method is used to obtain the torsional rigidity and Mode III stress intensity factor of a thick-walled cylinder with an external radial crack. When the internal radius of the cylinder is very small, the results agree well with those obtained previously from other methods for an edge crack in a solid cylindrical bar. The present method is shown to be expedient when applied to obtain results for different ratios of the internal and external radii of the cracked cylinder.  相似文献   

4.
The Dugdale hypothesis is adapted to the problem of an external circumferential crack in a stretched cylinder. The lateral surface of the cylinder is stress free and restrained from radial displacements. An external circumferential edge crack in the cylinder which is considered elastic-perfectly plastic is envisaged with the assumption that the plastic zone forms a very thin in-plane layer surrounding the crack. The solution of the problem is reduced to the solution of dual Dini series which, in turn, is reduced to a Fredholm integral equation of the second kind. Solving this integral equation numerically and using the boundedness of the axial stress, the size of the plastic zone correction is obtained.  相似文献   

5.
6.
Summary A solution is derived from equations of equilibrium in an infinite isotropic elastic solid containing a penny-shaped crack where displacements are given. Abel transforms of the second kind stress and displacement components at an arbitrary point of the solid are known in the literature in terms of jumps of stress and displacement components at a crack plane. Limiting values of these expressions at the crack plane together with the boundary conditions lead to Abel-type integral equations, which admit a closed form solution. Explicit expressions for stress and displacement components on the crack plane are obtained in terms of prescribed face displacements of crack surfaces. Some special cases of the crack surface shape functions have been given in the paper.  相似文献   

7.
This paper contains an analysis of the stress distribution in a long circular cylinder of isotropic elastic material with a circumferential edge crack when it is deformed by the application of a uniform shearing stress. The crack with its center on the axis of the cylinder lies on the plane perpendicular to that axis, and the cylindrical surface is stress-free. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of singular integral equations. This pair of singular integral equations is solved numerically, and the stress intensity factor due to the effect of the crack size is tabulated.  相似文献   

8.
残余应力下厚壁筒表面裂纹的应力强度因子计算   总被引:1,自引:0,他引:1  
本文首先介绍了边界元法计算裂纹尖端应力强度因子的基本理论,接着利用边界元法计算了在残余应力下不同厚壁筒内表面椭圆裂纹的应力强度因子,研究了其大不随椭圆裂纹不同而变化的规律,为厚壁筒结构的设计,制造以及疲劳寿命分析提供了许多有价值的参考资料。  相似文献   

9.
10.
11.
In this paper the writer uses Muskhelishvili single-layer potential function solutionand single crack solution for the torsion problem of a circular cylinder to discuss thetorsion problem of a composite cylinder with an internal crack,and the problem isreduced to a set of mixed-type integral equation with generalized Cauchy-kernel.Then,by using the integration formula of Gauss-Jacobi.the numerical method isestablished and several numerical examples are calculated.The torsional rigidity andthe stress intensity factors are obtained.The results of these examples fit the resultsobtained by the previous papers better.  相似文献   

12.
13.
An axisymmetric tangent stress is applied to a lateral surface of a multilayered elastic finite cylinder with a fixed bottom face. The problem is solved for an arbitrary number of layers. The layers are coaxial, and the conditions of an ideal mechanical contact are fulfilled between them. A circular crack is situated parallel to the cylinder's faces in the internal layer with branches free from stress. The upper face of the cylinder is also free from stress. Concretization of the problem is done on examples of two-and three-layered cylinders. An analysis of cylinders' stress state is conducted and the stress intensity factor is evaluated depending on the crack's geometry, its location and ratio of the shear modulus. Advantages of the proposed method include reduction of the solution constants' number regardless of the number of layers, and presentation of the mechanical characteristics in a form of uniformly convergent series.  相似文献   

14.
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.  相似文献   

15.
In this work, the natural convection in a concentric annulus between a cold outer square cylinder and a heated inner circular cylinder is simulated using the differential quadrature (DQ) method. The vorticity‐stream function formulation is used as the governing equation, and the coordinate transformation technique is introduced in the DQ computation. It is shown in this paper that the outer square boundary can be approximated by a super elliptic function. As a result, the coordinate transformation from the physical domain to the computational domain is set up by an analytical expression, and all the geometrical parameters can be computed exactly. Numerical results for Rayleigh numbers range from 104 to 106 and aspect ratios between 1.67 and 5.0 are presented, which are in a good agreement with available data in the literature. It is found that both the aspect ratio and the Rayleigh number are critical to the patterns of flow and thermal fields. The present study suggests that a critical aspect ratio may exist at high Rayleigh number to distinguish the flow and thermal patterns. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A detailed variational formulation is provided for a simplified strain gradient elasticity theory by using the principle of minimum total potential energy. This leads to the simultaneous determination of the equilibrium equations and the complete boundary conditions of the theory for the first time. To supplement the stress-based formulation, the coordinate-invariant displacement form of the simplified strain gradient elasticity theory is also derived anew. In view of the lack of a consistent and complete formulation, derivation details are included for the tutorial purpose. It is shown that both the stress and displacement forms of the simplified strain gradient elasticity theory obtained reduce to their counterparts in classical elasticity when the strain gradient effect (a measure of the underlying material microstructure) is not considered. As a direct application of the newly obtained displacement form of the theory, the problem of a pressurized thick-walled cylinder is analytically solved. The solution contains a material length scale parameter and can account for microstructural effects, which is qualitatively different from Lamé’s solution in classical elasticity. In the absence of the strain gradient effect, this strain gradient elasticity solution reduces to Lamé’s solution. The numerical results reveal that microstructural effects can be large and Lamé’s solution may not be accurate for materials exhibiting significant microstructure dependence.  相似文献   

17.
We reduce the plane strain problem to a nonlinear elasticity problem for inhomogeneous bodies by choosing a new form of the elastic potential, whose parameters are determined from the data known in the literature. By using the geometric linearization method, we reduce that problem to a sequence of linear elasticity problems for inhomogeneous bodies. We obtain an analytic solution of the corresponding linear elasticity problem in the case of an arbitrary continuously differentiable dependence of the shear modulus on the radial coordinate. We determine the pipe stress-strain state and parameters in the case of finite and large strains for given sets of initial data and estimate the accuracy of the solution thus obtained.  相似文献   

18.
Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号