首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Nanocrystalline titanium dioxide (TiO2) powders have been synthesized by sol–gel method using titanium tetrachloride (TiCl4) or tetrabutyl titanate (Ti(OC4H9)4 as precursors, different alcohols and calcination temperatures in the range from 400 to 650 °C. The photocatalytic activity of as-prepared powders has been tested for the degradation of metoprolol tartrate salt, a selective β-blocker used to treat a variety of cardiovascular diseases, and compared to photocatalytic activity obtained from Degussa P25. Nanosized TiO2 powders prepared from TiCl4 and amyl-alcohol, calcined at 550 °C, displayed an activity comparable to Degussa P25, whereas the sample from the same series, calcined at 650 °C, showed higher photocatalytic activity in the whole range of the catalyst loading. Structural, morphological and surface properties of synthesized TiO2 nanopowders have been investigated by XRD, SEM, EDS and BET measurements, as well as FTIR and Raman spectroscopy, in order to find out the material properties which enable rapid an efficient decomposition of metoprolol under UV radiation.  相似文献   

2.
《Comptes Rendus Chimie》2014,17(7-8):818-823
A series of W-modified TiO2 (W–TiO2) photocatalysts were synthesized by a simple sol–gel method. The new photocatalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis-diffuse reflectance spectroscopy (DRS), and Brunauer, Emmett and Teller (BET) surface area analyzer. The photoactivity of the W–TiO2 photocatalysts was evaluated by the photocatalytic oxidation of Congo red (CR) dye. It was found that the average size of the prepared photocatalysts is 10 nm. Moreover, they have high surface areas (∼ 216 m2 g−1) and their light-absorption extends to the visible region compared to pure TiO2. The effects of W-loading and of the calcination temperature of the prepared photocatalysts on their photocatalytic activity were also studied. The obtained results show that the W0.5–TiO2 photocatalyst calcined at 350 °C is much highly photoactive than non-doped or highly doped TiO2. The enhanced photocatalytic activity of the weakly doped TiO2 may be attributed to the increase in the charge separation efficiency and the presence of surface acidity on the W0.5–TiO2 photocatalyst.  相似文献   

3.
For the interest of the practical application, porous TiO2 sheets were prepared by a novel freeze tape-casting method, in order to improve the photocatalytic activities of these TiO2 sheets, p-type NiO was loaded by chemical solution deposition. The samples were characterized by a series of physical means, including XRD, SEM, EDS, XPS, ICP-OES, and UV-vis spectroscopy. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange solution. The results showed that the photocatalytic activity of the TiO2 sheet was greatly enhanced by the NiO loading, and the photocatalytic efficiency increased with increasing the NiO loading, the extraordinary performance for the NiO-loaded sample with 0.1 M precursor dipped was related to its unique morphology. The sample annealed at 600 °C showed the better photocatalytic activity than the sample annealed at 400 °C and 800 °C. The improvement of the photocatalytic activity was attributed to the formation of p–n junctures at the interface of the NiO/TiO2, which facilitates the photoinduced electron/hole pairs' separation by the inner electric field, thus leading to the higher photocatalytic activities for the NiO-loaded TiO2 sheets.  相似文献   

4.
To search for more wider absorption and higher charge carriers mobilities materials of polymer solar cell, a series of soluble alternating polyfluorene copolymers were synthesized by palladium-catalyzed Suzuki coupling reaction. Their structures were determined by 1H NMR, IR and UV-vis. And their UV-vis absorption spectra indicated that they had strong absorption over 600 nm spectral range and nearly cover 400-700 nm visible region. The band gaps of copolymers calculated according to cyclic voltammetry (CV) were between 1.96 and 2.03 eV. Polymer:TiO2 bulk-heterojunction films were made from mixtures of polymer and titanium isopropoxide, a precursor for TiO2, via hydrolysis in air overnight. The photoluminescence at 380-800 nm of the blend film of PT-TPP20 (5 mg/mL):Ti(OC3H7)4 (80 μL/mL) (20% volume fraction) was significantly quenched in the 50% Ti(OC3H7)4 blend film, indicating that rapid and efficient separation of photoinduced electron-hole pairs.  相似文献   

5.
A composite electrode of Ni-ferrite/TiOx/Si(111) was synthesized by grafting Ni2+Fe2+Fe3+–LDH–TiCl3 (LDH: Layered Double Hydroxides) on n-Si(111) surface and calcined under 1100 °C. Photoelectric research results indicated that the electrode had good photovoltaic effects in an electrolyte solution containing 7.6 M HI and 0.05 M I2, while platinum plate was used as counter-electrode. The observed photo-voltages (Upv) and photocurrent densities (jpc) of the electrode were at ?0.75 V and 5.35 mA/cm2, respectively. Compared with electrodes of oxidized n-Si(111) crystal and n-Si(111) wafer covered by Ni-ferrites, jpc of the electrode Ni-ferrite/TiOx/Si(111) was increased greatly.  相似文献   

6.
Tetragonal copper ferrite (CuFe2O4) nanofibers were fabricated by electrospinning method using a solution that contained poly(vinyl pyrrolidone) (PVP) and Cu and Fe nitrates as alternative metal sources. The as-spun and calcined CuFe2O4/PVP composite samples were characterized by TG-DTA, X-ray diffraction, FT-IR, and SEM, respectively. After calcination of the as-spun CuFe2O4/PVP composite nanofibers (fiber size of 89 ± 12 nm in diameter) at 500 °C in air for 2 h, CuFe2O4 nanofibers of 66 ± 13 nm in diameter having well-developed tetragonal structure were successfully obtained. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. After calcination at 600 and 700 °C, the nature of nanofibers changed which was possibly due to the reorganization of the CuFe2O4 structure at high temperature, and a fiber structure of packed particles or crystallites was prominent. Crystallite size of the nanoparticles contained in nanofibers increases from 7.9 to 23.98 nm with increasing calcination temperature between 500 and 700 °C. Room temperature magnetization results showed a ferromagnetic behavior of the calcined CuFe2O4 samples, having their specific saturation magnetization (Ms) values of 17.73, 20.52, and 23.98 emu/g for the samples calcined at 500, 600, and 700 °C, respectively.  相似文献   

7.
A series of nano-titania (TiO2) photocatalytic materials with a hollow fiber structure were successfully prepared using tetra-n-butyl titanate (Ti(OC4H9)4) as precursor and cotton fiber as the template. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and N2 adsorption-desorption measurements were employed to characterize the morphology, crystal structure, and surface structure of the samples. The photocatalytic activities of the samples were studied by phenol photodegradation in water under UV irradiation. The effect of calcination temperature, photocatalyst dosage, initial concentration of phenol and irradiation time on the photodegradation of phenol was studied. Results showed that the TiO2 fiber materials have hollow structures, indicating that these materials had a large specific surface area. The fiber structure material showed better photocatalytic properties for the degradation of phenol than pure TiO2 under UV light, and the sample calcined at 500°C exhibited the highest phenol photodegradation efficiency. In addition, the possibility of cyclic usage of the photocatalyst was also confirmed, the photocatalytic activity of TiO2 fiber remained ca. 90% of photocatalytic activity of the fresh sample after being used four times. Moreover, TiO2 fiber was easily recovered by centrifugal separation from water.  相似文献   

8.
It is demonstrated that nanostructured titanium (IV) oxide (TiO2) films can be deposited on glass substrates at 95 °C using hydrothermal growth, their properties being greatly affected by the substrate materials. Anatase TiO2 films grown on ITO for deposition period of 50 h were observed to exhibit a very efficient, reversible light-induced transition to super-hydrophilicity, reaching a nearly zero contact angle. Enhanced photocatalytic activity (65%) was found for the rutile TiO2 samples grown on microscope glass, possibly due to their higher roughness with respect to anatase grown on ITO. The effect of the substrate material used is discussed in terms of the TiO2 phase and morphology control, for the best photoinduced hydrophilic and photocatalytic performance of the samples.  相似文献   

9.
Catalytic properties of Ti-pillared montmorillonite for the epoxidation of (E)-hex-2-en-1-ol allylic alcohol. The present work is relative to the epoxidation of allylic alcohols by a well-characterised Ti-pillared montmorillonite (Ti-PILC) prepared by intercalating polymeric Ti cations formed by partial hydrolysis of TiCl4 with HCl. The interlayer distance, the specific surface area and thermal stabilities of the resulting pillared clays depend mainly on the pH of the pillaring solution. For a ratio H+/Ti = 0.24, the Ti-PILC shows a basal spacing of 2,6 nm and a specific surface area of 316 m2·g–1, stable up to 773 K. In the conversion of isopropanol, this Ti-PILC shows a Lewis type acidity and a low redox activity. It catalyses the oxidation of allylic alcohol (E)-hex-2-en-1-ol with tert-butyl hydroperoxide in the presence of diethyl tartrate. The yield and nature of the final products depend on the reaction temperature and catalyst activation: no epoxidation could be obtained with non calcined samples. With a solid calcined in air at 773 K and then converted to a Ti-PILC, the main product is hexenoic acid for a reaction below 273 K, while the epoxide of the allylic alcohol is formed with 50 % yield at 298 K. This yield is comparable to that reported for the same substrate for polymer supported Ti(IV) catalysts.  相似文献   

10.
Thermal decomposition of an amorphous precursor for sulfur-doped titania (S:TiO2) nanopowders, prepared by controlled sol–gel hydrolysis-condensation of titanium(IV) tetrabutoxide and thiourea in aqueous butanol, has been studied in situ up to 850 °C in flowing air by simultaneous thermogravimetric and differential thermal analysis coupled online with quadrupole mass spectrometer (TG/DTA–MS) and FTIR spectrometric gas cell (TG–FTIR) for analysis of gases and their evolution dynamics in order to explore and simulate thermal annealing processes of fabrication techniques aimed S:TiO2 photocatalysts with photocatalytic activities under visible light.The studied S-doped precursor's decomposition course remembers to that of non-doped xerogel from Ti(IV)-n-butoxide, which seems to retard a considerable amount of organics in the solid phase even at high temperature, probably in polymeric forms, proven by evolution of CO2 in several temperature regions of decomposition stages. The incorporation form of thiourea in the original xerogel seems to be chemically bounded, resulting lower decomposition temperature than that of pure thiourea, and producing evolution of carbonyl sulfide (COS) already between 120 and 190 °C. Nevertheless, evolution of SO2, and that of CO2 is also observed above 500 °C by both EGA detection methods. The latter observation implies that the blackish grey samples obtained even at 750 °C might be simultaneously S- and C-doped ones.  相似文献   

11.
The electrodeposition–annealing route to fabricating thin film of the promising photocatalyst material anatase-titanium dioxide (anatase-TiO2) has been studied. The sample was deposited with a solution of N,N-dimethylformamide containing titanium compound by controlled-potential technique. SEM image showed the annealed sample at 600 °C for 1 h under air provided a continuous film with a thickness of ca. 350 nm. In this sample, X-ray photoelectron spectrum corresponding to the Ti 2p peak assigned to a chemical bond of TiO2 and X-ray diffraction peaks assigned to the anatase phase were observed, respectively. Electrochemical oxidation in sodium sulfate solution on this annealed film was enhanced in the presence of UV light radiation. These results confirm the successful synthesis of photocatalytic anatase-TiO2 film by the electrodeposition and annealing process.  相似文献   

12.
《Comptes Rendus Chimie》2015,18(8):875-882
W–S–N-tri-doped TiO2 photocatalysts (WSNTiO2) were prepared by a simple sol–gel method. Tungstic acid, sodium sulfate and urea were used as tungsten, sulfur and nitrogen sources, respectively. The morphology and microstructure characteristics of the photocatalysts were evidenced by means of XRD, BET, TEM, SEM and UV–vis DRS techniques. The XRD results show that the main crystal phase of samples is anatase. It was also found that the tri-doping of TiO2 increases its BET specific surface area from 95 to 121 m2·g−1. Besides, it was shown that tri-doping narrows the band gap of TiO2 effectively, which has greatly improved the photocatalytic activity in the visible light region. The photocatalytic activity of tri-doped TiO2 powders was compared to that of bi-doped ones through the degradation of Congo Red (CR) under visible irradiation. Thus, the prepared 0.5% W–N–S–TiO2 heat treated at 450 °C showed the best photocatalytic activity compared to the prepared pure TiO2, Degussa P25, and co-doped samples (WNTiO2 and WSTiO2). In particular, a Congo Red degradation rate of approximately 99% was reached after only 35 min of visible light irradiation in the presence of 0.5% of WNSTiO2. Total organic carbon (TOC) removal of CR was up to 72% and confirmed its significant mineralization in the presence of 0.5% of WNSTiO2 photocatalyst.  相似文献   

13.
A vertically aligned transparent TiO2 nanotube array (tTNA) of significantly enhanced tube-length 6.3 ± 0.3 µm was successfully synthesized on glass substrates by anodization technique with ammonium fluoride and ethylene glycol-based electrolyte. Prior to anodization, Ti metal was deposited on glass substrate by facing-target sputtering technique with various sputtering pressures at substrate temperature 420 °C to find out the relation between the structural properties of the Ti layer and the corresponding growth mechanism of the TiO2 nanotube. The study revealed that structural properties of Ti metal layers and its adhesion to the glass substrate, which can be tuned by deposition parameters, play an important role in the process of tTNA formation.  相似文献   

14.
Chemical vapor deposition (CVD) was firstly used to simultaneously codope fluorine and boron into TiO2 nanotubes anodized Ti in C2H2O4 · 2H2O + NH4F electrolyte. F–B-codoping was successfully carried out by annealing the anodized TiO2 nanotubes through CVD, as evidenced from XPS analysis. SEM images showed that the higher the annealing temperature, the greater structure damage of F–B-codoped sample. XRD results confirmed that annealing temperature had an influence on the phase structure and boron and fluorine impurities could retard anatase–rutile phase transition. F–B-codoped samples displayed remarkably strong absorption in both UV and visible range. Under visible-light irradiation, F–B-codoped samples showed the higher Iph and catalytic activity in methyl orange photoelectrodegradation than F-doped sample and B-doped sample. This showed a convincing evidence of F–B-codoping of TiO2 had an obvious synergistic effect on the enhancement of photocurrents and photoelectrocatalytic activity.  相似文献   

15.
16.
La/Ti mixed oxides with weight ratios of 1:9, 2:8, 3:7, and 4:6 were prepared by sol–gel method. The photocatalytic activity of La/Ti oxides was evaluated based on the pCBA photodecomposition. The catalyst samples were characterized by XRD, TEM, DRS, BET, and photoluminescence (PL) spectra. Particles of the La/Ti-mixed oxides showed the diameter of about 7 nm. We found that 30% doping of lanthanum ions on the TiO2 powders induced the highest pCBA (4-chlorobenzonic acid) photodecomposition in these experimental conditions. The order of its photoactivity was as following: 30 > 20 > 0 > 10 > 40 wt%, which was the same for PL tendency. Also, PL spectra intensity increased with calcination temperature from 500 to 600 °C, then decreased at 700 °C. Phtotcatalytic activity followed the trend of the PL spectra intensity. The modification of TiO2 surface by lanthanum ion made it possible to enhance the photoactivity by retarding the recombination of photoexcited electron/hole pairs, in the result of the higher photoactivity in the stronger PL intensity.  相似文献   

17.
Some oxide catalysts, such as RuO2/Ti, IrO2/Ti and IrM(M: Ru, Mo, W, V)Ox/Ti binary oxide electrodes, were prepared by using a dip-coating method on a Ti substrate. Their catalytic behavior for the oxygen reduction reaction (ORR) was evaluated by cyclic voltammetry in 0.5 M H2SO4 at 60 °C. These catalysts were found to exhibit considerably high activity, and the most active one among them was Ir0.6V0.4O2/Ti prepared at 450 °C, showing onset potential for the ORR at about 0.86 V–0.90 (vs RHE).  相似文献   

18.
Ordered mesoporous TiO2 materials with an anatase frameworks have been synthesized by using a cationic surfactant cetyltrimethylammonium bromide (C16TMABr) as a structure-directing agent and soluble peroxytitanates as Ti precursor through a self-assembly between the positive charged surfactant S+ and the negatively charged inorganic framework I? (S+I? type). The low-angle X-ray diffraction (XRD) pattern of the as-prepared mesoporous TiO2 materials indicates a hexagonal mesostructure. XRD and transmission electron microscopy results and nitrogen adsorption–desorption isotherms measurements indicate that the calcined mesoporous TiO2 possesses an anatase crystalline framework having a maximum pore size of 6.9 nm and a maximum Brunauer–Emmett–Teller specific surface area of 284 m2 g?1. This ordered mesoporous anatase TiO2 also demonstrates a high photocatalytic activity for degradation of methylene blue under ultraviolet irradiation.  相似文献   

19.
The evolution of gases and volatiles during Sulcis coal pyrolysis under different atmospheres (N2 and H2) was investigated to obtaining a clean feedstock of combustion/gasification for electric power generation. Raw coal samples were slowly heated in temperature programmed mode up to 800 °C at ambient pressure using a laboratory-scale quartz furnace coupled to a Fourier transform infrared spectrometer (FTIR) for evolved gas analysis. Under both pyrolysis and hydropyrolysis conditions the evolution of gases started at temperature as low as 100 °C and was mainly composed by CO and CO2 as gaseous products. With increasing temperature SO2, COS, and light aliphatic gases (CH4 and C2H4) were also released. The release of SO2 took place up to 300 °C regardless of the pyrolysis atmosphere, whilst the COS emissions were affected by the surrounding environment. Carbon oxide, CO2, and CH4 continuously evolved up to 800 °C, showing similar release pathways in both N2 and H2 atmospheres. Trace of HCNO was detected at low pyrolysis temperature solely in pure H2 stream. Finally, the solid residues of pyrolysis (chars) were subjected to reaction with H2 to produce CH4 at 800 °C under 5.0 MPa pressure. The chars reactivity was found to be dependent on pyrolysis atmosphere, being the carbon conversions of 36% and 16% for charN2 and charH2, respectively.  相似文献   

20.
Cu and N-doped TiO2 photocatalysts were synthesized from titanium (IV) isopropoxide via a microwave-assisted sol-gel method. The synthesized materials were characterized by X-ray diffraction, UV-vis diffuse reflectance, photoluminescence (PL) spectroscopy, SEM, TEM, FT-IR, Raman spectroscopy, photocurrent measurement technique, and nitrogen adsorption–desorption isotherms. Raman spectra and XRD showed an anatase phase structure. The SEM and TEM images revealed the formation of an almost spheroid mono disperse TiO2 with particle sizes in the range of 9-17 nm. Analysis of N2 isotherm measurements showed that all investigated TiO2 samples have mesoporous structures with high surface areas. The optical absorption edge for the doped TiO2 was significantly shifted to the visible light region. The photocurrent and photocatalytic activity of pure and doped TiO2 were evaluated with the degradation of methyl orange (MO) and methylene blue (MB) solution under both UV and visible light illumination. The doped TiO2 nanoparticles exhibit higher catalytic activity under each of visible light and UV irradiation in contrast to pure TiO2. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of the titania in the following order: (Cu, N) - codoped TiO2 > N-doped TiO2 > Cu-doped TiO2 > TiO2. COD result for (Cu, N)-codoped TiO2 reveals ∼92% mineralization of the MO dye on six h of visible light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号