首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider in this paper the synchronization dynamics of coupled chaotic Van der Pol–Duffing systems. We first find that with the judicious choose of the set of initial conditions, the model exhibits two strange chaotic attractors. The problem of synchronizing chaos both on the same and different chaotic orbits of two coupled Van der Pol–Duffing systems is investigated. The stability boundaries of the synchronization process between two coupled driven Van der Pol model are derived and the effects of the amplitude of the periodic perturbation of the coupling parameter on these boundaries are analyzed. The results are provided on the stability map in the (q, K) plane.  相似文献   

2.
3.
We show that the chaotic dynamics of the conservative Duffing-Holmes oscillator obeys the universal Feigenbaum-Sharkovskii-Magnitskii theory of passage to chaos in dynamical systems of ordinary differential equations. Moreover, the cascades of bifurcations of the conservative and dissipative oscillators are continuously related to each other. Our study uses the stable control method, which permits rapidly stabilizing nearly any periodic solution and dynamically changing system parameters without moving far away from that periodic solution.  相似文献   

4.
In this paper, we study the dynamics of a ring of four mutually coupled identical self-sustained electromechanical devices both in their autonomous and nonautonomous chaotic states. The transition boundaries that can occur between instability and complete synchronization states when the coupling strength varies are derived. Numerical simulations are then performed to support the accuracy of the analytical approach.  相似文献   

5.
Duffing's equation with two external forcing terms have been discussed. The threshold values of chaotic motion under the periodic and quasi-periodic perturbations are obtained by using second-order averaging method and Melnikov's method. Numerical simulations not only show the consistence with the theoretical analysis but also exhibit the interesting bifurcation diagrams and the more new complex dynamical behaviors, including period-n (n=2,3,6,8) orbits, cascades of period-doubling and reverse period doubling bifurcations, quasi-periodic orbit, period windows, bubble from period-one to period-two, onset of chaos, hopping behavior of chaos, transient chaos, chaotic attractors and strange non-chaotic attractor, crisis which depends on the frequencies, amplitudes and damping. In particular, the second frequency plays a very important role for dynamics of the system, and the system can leave chaotic region to periodic motions by adjusting some parameter which can be considered as an control strategy of chaos. The computation of Lyapunov exponents confirm the dynamical behaviors.  相似文献   

6.
This paper deals with the nonlinear dynamics and synchronization of coupled electromechanical systems with multiple functions, described by an electrical Duffing oscillator magnetically coupled to linear mechanical oscillators. Firstly, the amplitudes of the sub- and super-harmonic oscillations for the resonant states are obtained and discussed using the multiple time scales method. The equations of motion are solved numerically using the Runge–Kutta algorithm. It is found that chaotic and periodic orbit coexist in the electromechanical system depending on the set of initial conditions. Secondly, the problem of synchronization dynamics of two coupled electromechanical systems both in the regular and chaotic states is also investigated, and estimation of the coupling coefficient under which synchronization and no-synchronization take place is made.  相似文献   

7.
The chaotic dynamics of a micromechanical resonator with electrostatic forces on both sides are investigated. Using the Melnikov function, an analytical criterion for homoclinic chaos in the form of an inequality is written in terms of the system parameters. Detailed numerical studies including basin of attraction, and bifurcation diagram confirm the analytical prediction and reveal the effect of parametric excitation amplitude on the system transition to chaos. The main result of this paper indicates that it is possible to reduce the electrostatically induced homoclinic and heteroclinic chaos for a range of values of the amplitude and the frequency of the parametric excitation. Different active controllers are applied to suppress the vibration of the micromechanical resonator system. Moreover, a time-varying stiffness is introduced to control the chaotic motion of the considered system. The techniques of phase portraits, time history, and Poincare maps are applied to analyze the periodic and chaotic motions.  相似文献   

8.
The suppression of chaotic motion in viscoelastic plates driven by external subsonic air flow is studied. Nonlinear oscillation of the plate is modeled by the von-Kármán plate theory. The fluid-solid interaction is taken into account. Galerkin’s approach is employed to transform the partial differential equations of the system into the time domain. The corresponding homoclinic orbits of the unperturbed Hamiltonian system are obtained. In order to study the chaotic behavior of the plate, Melnikov’s integral is analytically applied and the threshold of the excitation amplitude and frequency for the occurrence of chaos is presented. It is found that adding a parametric perturbation to the system in terms of an excitation with the same frequency of the external force can lead to eliminate chaos. Variations of the Lyapunov exponent and bifurcation diagrams are provided to analyze the chaotic and periodic responses. Two perturbation-based control strategies are proposed. In the first scenario, the amplitude of control forces reads a constant value that should be precisely determined. In the second strategy, this amplitude can be proportional to the deflection of the plate. The performance of each controller is investigated and it is found that the second scenario would be more efficient.  相似文献   

9.
In this paper, we report a variety of dynamical behaviors exhibited in a compact series–parallel LC circuit system comprising of two active elements, one linear negative conductance and one ordinary junction diode with piecewise linear v ? i characteristics. For convenience, we consider the amplitude (Ef) and frequency (f) of the driving force as control parameters amongst various other parameters. We observe the phenomenon of antimonotonicity, torus breakdown to chaos, bubbles to chaos, period doubling to chaos and emergence of multiple attractors which follow a progressive sequence, etc. As an overview to understand many more variety of bifurcations and attractors, the construction of two parameter phase diagram is also shown pictorially. The chaotic dynamics of this circuit is realized by laboratory experiment, numerical and analytical investigations and found that the results are in good agreement with each other.  相似文献   

10.
11.
Neuronal firing patterns are related to the information processing in neural system. This paper investigates the response characteristics of a silent Hodgkin–Huxley neuron to the stimulation of externally-applied sinusoidal electric field. The neuron exhibits both p:q phase-locked (i.e. a periodic oscillation defined as p action potentials generated by q cycle stimulations) and chaotic behaviors, depending on the values of stimulus frequencies and amplitudes. In one-parameter space, a rich bifurcation structure including period-adding without chaos and phase-locking alternated with chaos suggests frequency discrimination of the neuronal firing patterns. Furthermore, by mapping out Arnold tongues, we partition the amplitude–frequency parameter space in terms of the qualitative behaviors of the neuron. Thus the neuron’s information (firing patterns) encodes the stimulus information (amplitude and frequency), and vice versa.  相似文献   

12.
This paper studies the dynamics of a self-sustained electromechanical system with nonlinear coupling. The mechanical part is a flexible beam. The Krylov–Bogoliubov averaging method is used to derive oscillatory solutions. Focus is made on the effects of the detuning parameter and nonlinear coupling. The largest Lyapunov exponent is used to determine chaotic domains of the system.  相似文献   

13.
In this work chaotic dynamics of continuous mechanical systems such as flexible plates and shallow shells is studied. Namely, a wide class of the mentioned objects is analyzed including flexible plates and cylinder-like panels of infinite length, rectangular spherical and cylindrical shells, closed cylindrical shells, axially symmetric plates, as well as spherical and conical shells. The considered problems are solved by the Bubnov–Galerkin and higher approximation Ritz methods. Convergence and validation of those methods are studied. The Cauchy problems are solved mainly by the fourth Runge-Kutta method, although all variants of the Runge-Kutta methods are considered. New scenarios of transition from regular to chaotic orbits are detected, analyzed and discussed.First part of the paper is devoted to the validation of results obtained. This is why the same infinite length problem is reduced to that of a finite dimension through the FDM (Finite Difference Method) with the approximation order of O(c2), BGM (Bubnov–Galerkin Method) or RM (Ritz Method) with higher approximations. We pay attention not only to convergence of the mentioned methods regarding the number of partitions of the interval [0, 1] in the FDM or regarding the number of terms in the series applied either in the BGM or RM methods, but we also compare the results obtained via the mentioned different approaches. Furthermore, a so called practical convergence of different Runge-Kutta type methods are tested starting from the second and ending with the eighth order.Second part of the work is devoted to a study of routes to chaos in the so far mentioned mechanical objects. For this purpose the so-called “dynamical charts” are constructed versus control parameters {q0, ωp}, where q0 denotes the loading amplitude, and ωp is the loading frequency. The charts are constructed through analyses of frequency power spectra and the largest Lyapunov exponent (LE). Analysis of the mentioned charts indicates clearly that different routes to chaos exist and allow us to control the objects being investigated. In some cases we detect the classical Feigenbaum scenario and we compute also the Feigenbaum constant. This scenario accompanied all problems which we studied. In addition, we detect and illustrate novel scenarios of transition from regularity into chaos including the Ruelle–Takens–Newhouse–Feigenbaum scenario, and the so called modified Pomeau–Manneville scenario.Third part of the paper is devoted to analysis of the Lyapunov exponents. Namely, while investigating evolutions of vibration regimes of a shell associated with an increase of excitation amplitude q0 phase transitions chaos–hyper chaos as well as chaos-hyper chaos–hyper–hyper chaos dynamics are illustrated and studied. Furthermore, for all investigated plates and shells the Sharkovskiy windows of periodicity are detected. In particular, a space-temporal chaos/turbulence is studied.  相似文献   

14.
In this paper, we have examined effects of forcing a periodic Colpitts oscillator with periodic and chaotic signals for different values of coupling factors. The forcing signal is generated in a master bias-tuned Colpitts oscillator having identical structure as that of the slave periodic oscillator. Numerically solving the system equations, it is observed that the slave oscillator goes to chaotic state through a period-doubling route for increasing strengths of the forcing periodic signal. For forcing with chaotic signal, the transition to chaos is observed but the route to chaos is not clearly detectable due to random variations of the forcing signal strength. The chaos produced in the slave Colpitts oscillator for a chaotic forcing is found to be in a phase-synchronized state with the forced chaos for some values of the coupling factor. We also perform a hardware experiment in the radio frequency range with prototype Colpitts oscillator circuits and the experimental observations are in agreement with the numerical simulation results.  相似文献   

15.
In this paper, a hybrid control strategy, H variable universe adaptive fuzzy control, is derived and applied to synchronize two Hodgkin–Huxley (HH) neurons exposed to external electric field. Firstly, the modified model of HH neuron exposed to extremely low frequency (ELF) external electric field is established and its periodic and chaotic dynamics in response to sinusoidal electric field stimulation are described. And then the statement of the problem for unidirectional synchronization of two HH neurons is given. Finally H variable universe adaptive fuzzy control is designed to synchronize the HH systems and the simulation results demonstrate the effectiveness of the proposed control method.  相似文献   

16.
This paper investigates bifurcation and chaos of an axially accelerating viscoelastic beam. The Kelvin–Voigt model is adopted to constitute the material of the beam. Lagrangian strain is used to account for the beam's geometric nonlinearity. The nonlinear partial–differential equation governing transverse motion of the beam is derived from the Newton second law. The Galerkin method is applied to truncate the governing equation into a set of ordinary differential equations. By use of the Poincaré map, the dynamical behavior is identified based on the numerical solutions of the ordinary differential equations. The bifurcation diagrams are presented in the case that the mean axial speed, the amplitude of speed fluctuation and the dynamic viscoelasticity is respectively varied while other parameters are fixed. The Lyapunov exponent is calculated to identify chaos. From numerical simulations, it is indicated that the periodic, quasi-periodic and chaotic motions occur in the transverse vibrations of the axially accelerating viscoelastic beam.  相似文献   

17.
This paper systematically presents a theory for n-dimensional nonlinear dynamics on continuous vector fields. In this paper, a different view to look into the fundamental theory in dynamics is presented. The ideas presented herein are less formal and rigorous in an informal and lively manner. The ideas may give some inspirations in the field of nonlinear dynamics. The concepts of local and global flows are introduced to interpret the complexity of flows in nonlinear dynamic systems. Further, the global tangency and transversality of flows to the separatrix surface in nonlinear dynamical systems are discussed, and the corresponding necessary and sufficient conditions for such global tangency and transversality are presented. The ε-domains of flows in phase space are introduced from the first integral manifold surface. The domain of chaos in nonlinear dynamic systems is also defined, and such a domain is called a chaotic layer or band. The first integral quantity increment is introduced as an important quantity. Based on different reference surfaces, all possible expressions for the first integral quantity increment are given. The stability of equilibriums and periodic flows in nonlinear dynamical systems are discussed through the first integral quantity increment. Compared to the Lyapunov stability conditions, the weak stability conditions for equilibriums and periodic flows are developed. The criteria for resonances in the stochastic and resonant, chaotic layers are developed via the first integral quantity increment. To discuss the complexity of flows in nonlinear dynamical systems, the first integral manifold surface is used as a reference surface to develop the mapping structures of periodic and chaotic flows. The invariant set fragmentation caused by the grazing bifurcation is discussed. The global grazing bifurcation is a key to determine the global transversality to the separatrix. The local grazing bifurcation on the first integral manifold surface in a single domain without separatrix is a mechanism for the transition from one resonant periodic flow to another one. Such a transition may occur through chaos. The global grazing bifurcation on the separatrix surface may imply global chaos. The complexity of the global chaos is measured by invariant sets on the separatrix surface. The invariant set fragmentation of strange attractors on the separatrix surface is central to investigate the complexity of the global chaotic flows in nonlinear dynamical systems. Finally, the theory developed herein is applied to perturbed nonlinear Hamiltonian systems as an example. The global tangency and tranversality of the perturbed Hamiltonian are presented. The first integral quantity increment (or energy increment) for 2n-dimensional perturbed nonlinear Hamiltonian systems is developed. Such an energy increment is used to develop the iterative mapping relation for chaos and periodic motions in nonlinear Hamiltonian systems. Especially, the first integral quantity increment (or energy increment) for two-dimensional perturbed nonlinear Hamiltonian systems is derived, and from the energy increment, the Melnikov function is obtained under a certain perturbation approximation. Because of applying the perturbation approximation, the Melnikov function only can be used for a rough estimate of the energy increment. Such a function cannot be used to determine the global tangency and transversality to the separatrix surface. The global tangency and transversality to the separatrix surface only can be determined by the corresponding necessary and sufficient conditions rather than the first integral quantity increment. Using the first integral quantity increment, limit cycles in two-dimensional nonlinear systems is discussed briefly. The first integral quantity of any n-dimensional nonlinear dynamical system is very crucial to investigate the corresponding nonlinear dynamics. The theory presented in this paper needs to be further developed and to be treated more rigorously in mathematics.  相似文献   

18.
Chaos anticontrol of three time scale brushless dc motors and chaos synchronization of different order systems are studied. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. By adding constant term, periodic square wave, the periodic triangle wave, the periodic sawtooth wave, and kx|x| term, to achieve anticontrol of chaotic or periodic systems, it is found that more chaotic phenomena of the system can be observed. Then, by coupled terms and linearization of error dynamics, we obtain the partial synchronization of two different order systems, i.e. brushless DC motor system and rate gyroscope system.  相似文献   

19.
By employing threshold policy control (TPC) in combination with the definition of integrated pest management (IPM), a Filippov prey–predator model with periodic forcing has been proposed and studied, and the periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of the prey. This study aims to address how the periodic forcing and TPC affect the pest control. To do this, the sliding mode dynamics and sliding mode domain have been addressed firstly by using Utkin’s equivalent control method, and then the existence and stability of sliding periodic solution are investigated. Furthermore, the complex dynamics including multiple attractors coexistence, period adding sequences and chaotic solutions with respect to bifurcation parameters of forcing amplitude and economic threshold (ET) have been investigated numerically in more detail. Finally the switching transients associated with pest outbreaks and their biological implications have been discussed. Our results indicate that the sliding periodic solution could be globally stable, and consequently the prey or pest population can be controlled such that its density falls below the economic injury level (EIL). Moreover, the switching transients have both advantages and disadvantages concerning pest control, and the magnitude and frequency of switching transients depend on the initial values of both populations, forcing amplitude and ET.  相似文献   

20.

Cycling behavior, in which solution trajectories linger around steady-states and periodic solutions, is known to be a generic feature of coupled cell systems of differential equations. In this type of systems, cycling behavior can even occur independently of the internal dynamics of each cell. This conclusion has lead to the discovery of "cycling chaos", in which solution trajectories cycle around symmetrically related chaotic sets. In this work, we demonstrate that cycling behavior also occurs in coupled systems of difference equations. More specifically, we prove the existence of structurally stable cycles between fixed points, and use numerical simulations to illustrate that the resulting cycles can also persist independently of the internal dynamics of each cell. Consequently, we demonstrate that cycles involving periodic orbits as well as cycling chaos also occur in systems of difference equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号