首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modified theory of the boundary layer associated with a periodic capillary-gravity wave on the uniformly charged interface between two immiscible viscous incompressible liquids is proposed. A model problem simpler than the exact problem is proposed for describing the boundary layer flows in the upper and lower liquids. The structure of the solution of this problem reflects the principal features of the exact asymptotic solution, namely, the rapidity of the decrease in the vortex part of the flow as a function of the depth and the insignificance of certain components. Estimates of the boundary layer thicknesses for which the difference between the exact asymptotic solution and the solution of the simplified model problem (formulated within the framework of the theory proposed) can be specified with a predetermined accuracy are obtained.  相似文献   

2.
An asymptotic theory of the neutral stability curve for a supersonic plane Couette flow of a vibrationally excited gas is developed. The initial mathematical model consists of equations of two-temperature viscous gas dynamics, which are used to derive a spectral problem for a linear system of eighth-order ordinary differential equations within the framework of the classical linear stability theory. Unified transformations of the system for all shear flows are performed in accordance with the classical Lin scheme. The problem is reduced to an algebraic secular equation with separation into the “inviscid” and “viscous” parts, which is solved numerically. It is shown that the thus-calculated neutral stability curves agree well with the previously obtained results of the direct numerical solution of the original spectral problem. In particular, the critical Reynolds number increases with excitation enhancement, and the neutral stability curve is shifted toward the domain of higher wave numbers. This is also confirmed by means of solving an asymptotic equation for the critical Reynolds number at the Mach number M ≤ 4.  相似文献   

3.
There are many problems of the dynamics of viscous flows of liquids and gases at high Reynolds numbers for the solution of which the classical theory of the boundary layer cannot be used. This applies, in particular, to all the problems with various sorts of local singularities in the stream-flows in the vicinity of corners, in regions of interaction of the boundary layer with an incident shock, flows near points of separation or attachment of the stream, etc. The purpose of the present paper is to attempt the theoretical investigation of problems of this type on the basis of the general analysis of the asymptotic behavior of the solutions of the Navier-Stokes equations. In order to do this, use is made of the familiar method of the construction and splicing of a combination of asymptotic expansions representing the solutions in the various characteristic regions of the stream with viscosity decreasing without bound [1].As an example, detailed consideration is given to the problem of viscous supersonic flow near a wall with large local curvature of the surface.  相似文献   

4.
In this article a parametric study based on a balance between viscous drag and restoring Brownian forces is used in order to construct a nonlinear dumbbell model with a finite spring and a drag correction for a dilute polymer solution. The constitutive equations used are reasonable approximation for describing flows of very dilute polymer solutions such as those used in turbulent drag reduction. We investigate the response of an elastic liquid under extensional flows in order to explore the roles of a stress anisotropy and of elasticity in strong flows. It is found that for low Reynolds numbers, the extensional viscosity of a dilute polymer solution is governed by two parameters: a Deborah number representing the importance of the elasticity on the flow and the macromolecule extensibility that accounts for the viscous anisotropic effects caused by the macromolecule orientation. Two different asymptotic regimes are described.The first corresponds to an elastic limit in which the extensional viscosity is a function of the Deborah number and the particle volume fraction. The second is an anisotropic regime with the extensional viscosity independent of Deborah number but strongly dependent on macromolecule aspect ratio. The analysis may explain from a phenomenological point of view why few ppms of macromolecules of high molecule weight or a small volume fraction of long fibres produce important attenuation of the pressure drop in turbulent flows. On the basis of our analysis it is seen that the anisotropic limit of the extensional viscosity caused by extended polymers under strong flows should play a key role in the attenuation of flow instability and in the mechanism of drag reduction by polymer additives.  相似文献   

5.
In this paper, we study the propagation of high-intensity acoustic noise in free space and in waveguide systems. A mathematical model generalizing the Burgers equation is used. It describes the nonlinear wave evolution inside tubes of variable cross-section, as well as in ray tubes, if the geometric approximation for heterogeneous media is used. The generalized equation transforms to the common Burgers equation with a dissipative parameter, known as the “Reynolds–Goldberg number”. In our model, this number depends on the distance travelled by the wave. With a zero “viscous” dissipative term, the model reduces to the Riemann (or Hopf) equation. Its solution presents the field by an implicit function. The spectral form of this solution makes it possible to derive explicit expressions for both dynamic and statistical characteristics of intense waves. The use of a spectral approach allowed us to describe the high-intensity noise in media with zero and finite viscosity. Applicability conditions of these solutions are defined. Since the phase matching is fulfilled for any triplet of interacting spectral components, there is an avalanche-like increase in the number of harmonics and the formation of shocks. The relationship between these discontinuities and other singularities and the high-frequency asymptotic of intense noise is studied. The possibility is shown to enhance nonlinear effects in waveguide systems during the evolution of noise.  相似文献   

6.
A consitutive theory for polymetric liquids based on the transient network concept is developed, following Wiegel and Jongschaap. The Phan-Thien-Tanner equation is shown to follow from the general theory with two critical assumption, one of these is quasi-equilibrium of the internal structure, which preludes consistency of application in ”fast flows“. The Marrucci model can be made consistent with the general format with a small change in the kinetic equation that can be deduced from asymptotic behaviour and leaves the steady viscometric behavior unchanged. The simplest genaral formulation requires the linear viscoelastic spectrum and two parameters; the latter cannot be determined uniquely from steady viscometric flow data.  相似文献   

7.
In this paper we investigate the effects of an irrotational, viscous pressure on the stability of a liquid jet into gases and liquids. The analysis extends our earlier work (part 1) in which the stability of the viscous jet was studied assuming that the motion and pressure are irrotational and the viscosity enters through the jump in the viscous normal stress in the normal stress balance at the interface. The liquid jet is always unstable; at high Weber numbers the instability is dominated by capillary instability; at low W the instability is dominated by Kelvin–Helmholtz (KH) waves generated by pressures driven by the discontinuous velocity. In the irrotational analysis the viscosity is important but the effects of shear are neglected. In fact a discontinuous velocity is not compatible with the continuity of the tangential components of velocity and shear stress so that KH instability is not properly posed for exact study using the no-slip condition but some of the effects of viscosity can be ascertained using viscous potential flow. The theory is called viscous potential flow (VPF). Here we develop another irrotational theory in which the discontinuities in the irrotational tangential velocity and shear stress are eliminated in the global energy balance by selecting viscous contributions to the irrotational pressure. These pressures generate a hierarchy of potential flows in powers of the viscosity, but only the first one, linear in viscosity, in the irrotational viscous stress, is thought to have physical significance. The tangential velocity and shear stress in an irrotational study cannot be made continuous, but the effects of the discontinuous velocity and stress in the mechanical energy balance can be removed “in the mean.” This theory with the additional viscous pressure is called VCVPF, viscous correction of VPF. VCVPF is VPF with the additional pressures. The theory here cannot be compared with an exact solution, which would not allow the discontinuous velocity and stress. In other problems, like capillary instability, in which VCVPF can be compared with an exact solution, the agreements are uniformly excellent in the wave number when one of the fluids is gas and in good but not uniform, agreement when both fluids are liquids.  相似文献   

8.
The flow of an incompressible fluid in the viscous wall sublayer of a turbulent boundary layer in the neighborhood of a point of separation is considered. On the basis of an asymptotic analysis of the Reynolds equations and without the use of any hypotheses about their closure it is shown that at large Reynolds numbers the velocity profile satisfies the well-known “half-power law,” and as a result of a large self-induced pressure gradient separation is preceded by the appearance of reverse flows in a thin viscous sublayer.  相似文献   

9.
By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved very efficient, for it is kept within thep-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solution. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cell-centered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model. Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performances are shown for sphere viscous flows. The project supported by the Basic Research on Frontier Problems in Fluid and Aerodynamics in China and the National Natural Science Foundation of China (19772069)  相似文献   

10.
Solutions of flexible high-molecular-weight polymers or some kinds of surfactant are viscoelastic fluids. The elastic stress is induced in such viscoelastic fluid flows and grows nonlinearly with the flow-rate resulting in many particular flow phenomena, including purely elastic instability. The purely elastic instability can even result in a kind of chaotic fluid motion, the so-called elastic turbulence, which is a recently discovered flow phenomenon and arises at arbitrarily small Reynolds number. By using viscoelastic surfactant solution, we attempted to create the peculiar chaotic fluid motions in several specially designed microchannels in which flows with curvilinear streamlines can be generated. The viscoelastic working fluids were aqueous solutions of surfactant, CTAC/NaSal (cetyltrimethyl ammonium chloride/sodium salicylate). CTAC solutions with weight concentration of 200 ppm (part per million) and 1000 ppm, respectively, at room temperature were tested. For comparison, water flows in the same microchannels were also visualized. The Reynolds numbers for all the microchannel flows were quite small (for solution flows, the Reynolds numbers were the order of or smaller than one) and the flow should be definitely laminar for Newtonian fluid. It was found that the regular laminar flow patterns for low-Reynolds-number Newtonian fluid flow in different microchannels were strongly deformed in solution flows: either asymmetrical flow structures or time-dependent vortical fluid motions appeared. These chaotic flow phenomena were considered to be induced by the viscoelasticity of the CTAC solutions. Discussions about the potential applications using such kind of chaotic fluid motions were also made.  相似文献   

11.
The motion of thin films of a viscous incompressible liquid in a gas under the action of capillary forces is studied. The surface tension depends on the surfactant concentration, and the liquid is nonvolatile. The motion is described by the well-known model of quasi-steady-state viscous film flow. The linear-wave solutions are compared with the solution using the Navier-Stokes equations. Situations are studied where a solution close to the inviscid two-dimensional solutions exists and in the case of long wavelength, the occurrence of sound waves in the film due to the Gibbs surface elasticity is possible. The behavior of the exact solutions near the region of applicability of asymptotic equations is studied, and nonmonotonic dependences of the wave characteristics on wavenumber are obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 103–111, May–June, 2007.  相似文献   

12.
A theoretical analysis is presented of viscous incompressible laminar flow in a pipe which rotates around an axis held at small angle with respect to its symmetry-axis. Analogous to the results of Barua and Benton [1, 2], solutions in closed-form are given for circulatory flows in the cross-sectional plane of the pipe due to Coriolis forces in combination with Hagen-Poiseuille flow through the pipe. The solutions are used to derive analytical expressions for trajectories of solid or liquid particles entrained in the gas and being subject to centrifugation and the said secondary flows. It is shown that despite centrifugation, particles can be locked into circulatory trajectories thus remaining suspended in the gas flowing through the pipe.  相似文献   

13.
Viscous dissipation effect on heat transfer characteristics of a rectangular microchannel is studied. Flow is governed by the Navier–Stokes equations with the slip flow and temperature jump boundary conditions. Integral transform technique is applied to derive the temperature distribution and Nusselt number. The velocity distribution is taken from literature. The solution method is verified for the case where viscous dissipation is neglected. It is found that, the viscous dissipation is negligible for gas flows in microchannels, since the contribution of this effect on Nu number is about 1%. However, this effect should be taken into account for much more viscous flows, such as liquid flows. Neglecting this effect for a flat microchannel with an aspect ratio of 0.1 for Br=0.04 underestimates the Nu number about 5%.  相似文献   

14.
A method is outlined for solving two-dimensional transonic viscous flow problems, in which the velocity vector is split into the gradient of a potential and a rotational component. The approach takes advantage of the fact that for high-Reynolds-number flows the viscous terms of the Navier-Stokes equations are important only in a thin shear layer and therefore solution of the full equations may not be needed everywhere. Most of the flow can be considered inviscid and, neglecting the entropy and vorticity effects, a potential model is a good approximation in the flow core. The rotational part of the flow can then be calculated by solution of the potential, streamfunction and vorticity transport equations. Implementation of the no-slip and no-penetration boundary conditions at the walls provides a simple mechanism for the interaction between the viscous and inviscid solutions and no extra coupling procedures are needed. Results are presented for turbulent transonic internal choked flows.  相似文献   

15.
A thin film of low-viscosity lubricating liquid between a solid wall and a viscous material reduces shear stress on the latter and tends to make it flow as though it were slipping along the wall. The result when the lubricated material is being squeezed out of the gap between approaching parallel plates is flow more nearly irrotational, or extensional, the more effective the lubricating film on the plates. Two Newtonian analyses of this flow situation are reported. One is an approximate, asymptotic analytical solution for Newtonian lubricating flow in the films and combined mixed flow, shear and extension, in the viscous layer. The second is a full two-dimensional axisymmetric solution of the momentum and continuity equations along with the kinematic condition which governs the motion of the interface. Both analyses indicate that there are two limiting flow regimes, depending on the ratio of the thickness of each of the two phases to radius and on the viscosity ratio of the two liquids. In one limit the flow is parallel squeezing and the lubricant layer slowly thins and persists a long time. In the other the lubricant is expelled preferentially. Implications of the results are discussed for rheological characterization of viscoelastic liquids and for prediction of lubricated or autolubricated flows in processing situations.  相似文献   

16.
In this work we consider a viscous regularization of a well-known one-dimensional model for isentropic viscous compressible flows through a nozzle. For the existence and multiplicity of standing asymptotic states for a certain type of ducts, a complete analysis in a framework of dynamical systems is provided. As an application of the geometric singular perturbation theory, we show that all standing asymptotic states admit viscous profiles.  相似文献   

17.
Overcoming the spatial constraints of the small-scale wind tunnel at Northeastern University, a multi-blade flow device (MBFD) has been installed within the facility’s test chamber to generate ramps in measured wind velocities by redirecting horizontally driven flows. As a continuation feasibility study, this paper analyzes the aerodynamic loads imparted on a building model from these simulated non-stationary outflows. Base forces are recorded with a high-frequency force balance sensor (HFFB) and compared to digital simulations using a modified quasi-steady aerodynamic load approach. Under certain conditions, the forces obtained from both physical and numerical procedures coincide well with each other, although differences arise due to assumptions and deficiencies in the modeling. Nonetheless, results indicate that altering horizontal flows with this device is suitable for replicating non-stationary aerodynamic loads, within the confines of a small-scale wind, “straight” tunnel.  相似文献   

18.
We address a recent extension of the point-particle method to non-dilute clouds dispersed by shock waves and a claim that added mass and viscous unsteady forces remain effective for a significant portion of the transient, “even when the particle-to-gas density ratio is large” (Ling et al, Phys. Fluids, 24, 113301, 2012). We demonstrate that this (Euler-Lagrange) model is prey to numerical instabilities, that the results depend strongly on the method(s) employed to stabilize the computation, and that the claim about the significance of these unsteady forces, for such systems, is unwarranted. Moreover, we show that these problems exist even in the application of this model to dilute dispersions, and that while maintaining the coupling length scales in the calculations yields convergence on grid refinement, the results are not physically meaningful. Further, computations in a fully-Eulerian framework, including a multi-field rendition, exhibit fundamentally similar trends, leading us to suggest that the root-cause is to be found in the (common) Eulerian part of the two modeling frameworks. This is confirmed by first-of-a-kind direct numerical simulations, which in agreement with our experiments, reveal that high-speed flows down steep volume-fraction gradients are naturally dispersive. This clearly-stabilizing mechanism is missed in current models; worse, the behaviors they exhibit are cumulative. Based on the detailed DNS results, we present a plan for the way ahead, as we conclude that contrary to many previous “diagnoses”, and attempted “remedies”, the ill-posedness (name for the catastrophic instabilities discussed) of the mathematical problem is not just an annoying aberration, but rather it is in the very essence of missing these key physics.  相似文献   

19.
An exact solution for laminar two-phase eccentric core-annular flows (CAF) in inclined pipes is derived. This solution complements the exact solutions that were obtained for inclined stratified flows with curved interfaces as to provide a set of solutions for two-phase laminar separated flows. A unified set of three dimensionless parameters for separated flows is defined and used to explore the effects of the system parameters and separated flow configurations on the velocity profiles and the resulting holdup, pressure gradient and pumping power requirement in horizontal and inclined concurrent and countercurrent flows. It is shown that similarly to stratified flows, also in CAF multiple solutions for the holdup and the associated flow characteristics can be obtained in inclined flows. The boundaries of the multiple solution regions are mapped and the effect of the core eccentricity and system parameters boundaries are demonstrated and discussed.The benefits of adding a lubricating phase for transportation of a viscous fluid in inclined CAFs is investigated. An adverse effect of the upward pipe inclination on the power savings in all of the separate flow configurations is demonstrated. Independently of the density of the lubricant, namely, whether it is lighter or heavier than the viscous fluid, the effect of hydrostatic pressure gradient always hinders the possibility of reducing the pumping requirement for transporting the viscous phase. However, surprisingly, a heavier lubricant is preferable form the view point of power saving. The implications of turbulent flow of the lubricating phase and the susceptibility to Ledinegg instability on the potential power savings are also considered and discussed. The application of the model for the analysis of experimental data of the holdup and pressure drop obtained in horizontal and inclined CAF is also demonstrated.  相似文献   

20.
The problem of two-dimensional unsteady flow of a viscous incompressible fluid in a sector-like domain is considered. Initially a strictly radial flow is imposed, which makes it possible to seek solutions within the class of self-similar flows. A numerical method based on mixed finite-difference and spectral spatial discretization is developed, making it possible to find the self-similar solution efficiently. The process of development and establishment of the steady Hamel-Jeffery and Moffatt flows is modeled mathematically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号