首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical solutions based on the method of fundamental solutions are discussed for Stokes flow inside a rectangular cavity in the presence of circular cylinders. The Stokeslets are used as the fundamental solutions to obtain the solution for the flow field by a linear combination of fundamental solutions. Flow results on the cellular structure of flow field resulting from the dynamics of cylinders and the horizontal walls of the cavity are reported for (i) one rotating cylinder in a rectangular cavity with two parallel horizontal sides moving in the same directions as well as in the opposite directions, (ii) two rotating cylinders kept apart in a rectangular cavity with two parallel horizontal sides moving in the same directions as well as in the opposite directions. The effect of aspect ratio of the rectangular cavity, direction of movement of the two parallel horizontal sides of the cavity and the diameter of the rotating cylinder on the flow structure are studied. The flow results obtained for the single cylinder case are in accordance with the results available in the literature. From the computational point of view, the present numerical procedure based on the method of fundamental solutions is efficient and simple to implement as compared to the mesh-dependent schemes, which needs complex mesh generation procedure for the multiply connected geometrical domains considered in this article.  相似文献   

2.
An efficient two-dimensional (2-D) analytical and numerical procedure has been proposed to investigate three-dimensional (3-D) internal flows through a passage with a spatially variable depth, in which the viscous forces act significantly on both upper and lower walls. The integral 2-D version of the Navier–Stokes equation was obtained by integrating the full Navier–Stokes equation in a 3-D form over the depth of the passage. In order to examine the validity of the integrated momentum equations, fully-developed flows in straight noncircular ducts were investigated analytically prior to numerical investigations. It has been shown that the exact solutions for circular, elliptical and equilateral triangular ducts are obtainable from the integrated Navier–Stokes equation. Having confirmed its wide applicability to internal flows, numerical computations were conducted to investigate the oscillation mechanism of a fluidic oscillator. Comparison of the present prediction and experiment reveals the validity of the present treatment.  相似文献   

3.
In this paper, a pressure correction algorithm for computing incompressible flows is modified and implemented on unstructured Chimera grid. Schwarz method is used to couple the solutions of different sub-domains. A new interpolation to ensure consistency between primary variables and auxiliary variables is proposed. Other important issues such as global mass conservation and order of accuracy in the interpolations are also discussed. Two numerical simulations are successfully performed. They include one steady case, the lid-driven cavity and one unsteady case, the flow around a circular cylinder. The results demonstrate a very good performance of the proposed scheme on unstructured Chimera grids. It prevents the decoupling of pressure field in the overlapping region and requires only little modification to the existing unstructured Navier–Stokes (NS) solver. The numerical experiments show the reliability and potential of this method in applying to practical problems.  相似文献   

4.
The problem of unsteady laminar flow and heat transfer of a particulate suspension in an electrically conducting fluid through channels and circular pipes in the presence of a uniform transverse magnetic field is formulated using a two-phase continuum model. Two different applied pressure gradient (oscillating and ramp) cases are considered. The general governing equations of motions (which include such effects as particulate phase stresses, magnetic force, and finite particle-phase volume fraction) are non-dimensionalized and solved in closed form in terms of Fourier cosine and Bessel functions and the energy equations for both phases are solved numerically since they are non-linear and are difficult to solve analytically. Numerical solutions based on the finite-difference methodology are obtained and graphical results for the fluid-phase volumetric flow rate, the particle-phase volumetric flow rate, the fluid-phase skin-friction coefficient and the particle-phase skin-friction coefficient as well as the wall heat transfer for plane and axisymmetric flows are presented and discussed. In addition, these numerical results are validated by favorable comparisons with the closed-form solutions. A comprehensive parametric study is performed to show the effects of the Hartmann magnetic number, the particle loading, the viscosity ratio, and the temperature inverse Stokes number on the solutions.  相似文献   

5.
This paper uses a fourth‐order compact finite‐difference scheme for solving steady incompressible flows. The high‐order compact method applied is an alternating direction implicit operator scheme, which has been used by Ekaterinaris for computing two‐dimensional compressible flows. Herein, this numerical scheme is efficiently implemented to solve the incompressible Navier–Stokes equations in the primitive variables formulation using the artificial compressibility method. For space discretizing the convective fluxes, fourth‐order centered spatial accuracy of the implicit operators is efficiently obtained by performing compact space differentiation in which the method uses block‐tridiagonal matrix inversions. To stabilize the numerical solution, numerical dissipation terms and/or filters are used. In this study, the high‐order compact implicit operator scheme is also extended for computing three‐dimensional incompressible flows. The accuracy and efficiency of this high‐order compact method are demonstrated for different incompressible flow problems. A sensitivity study is also conducted to evaluate the effects of grid resolution and pseudocompressibility parameter on accuracy and convergence rate of the solution. The effects of filtering and numerical dissipation on the solution are also investigated. Test cases considered herein for validating the results are incompressible flows in a 2‐D backward facing step, a 2‐D cavity and a 3‐D cavity at different flow conditions. Results obtained for these cases are in good agreement with the available numerical and experimental results. The study shows that the scheme is robust, efficient and accurate for solving incompressible flow problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
We present a strong form meshless solver for numerical solution of the nonstationary, incompressible, viscous Navier–Stokes equations in two (2D) and three dimensions (3D). We solve the flow equations in their stream function-vorticity (in 2D) and vector potential-vorticity (in 3D) formulation, by extending to 3D flows the boundary condition-enforced immersed boundary method, originally introduced in the literature for 2D problems. We use a Cartesian grid, uniform or locally refined, to discretize the spatial domain. We apply an explicit time integration scheme to update the transient vorticity equations, and we solve the Poisson type equation for the stream function or vector potential field using the meshless point collocation method. Spatial derivatives of the unknown field functions are computed using the discretization-corrected particle strength exchange method. We verify the accuracy of the proposed numerical scheme through commonly used benchmark and example problems. Excellent agreement with the data from the literature was achieved. The proposed method was shown to be very efficient, having relatively large critical time steps.  相似文献   

7.
A new regularization method is proposed for the Galerkin approximation of the incompressible Navier–Stokes equations with Q1/P0 element, by newly introducing a square‐type linear form into the variational divergence‐free constraint regularized with the global pressure jump (GPJ) method. The addition of the square‐type linear form is intended to eliminate the hydrostatic pressure mode appearing in confined flows, and to make the discretized matrix positive definite and then non‐singular without the pressure pegging trick. Effects of the free parameters for the regularization on the solutions are numerically examined with a 2‐D driven cavity flow problem. Furthermore, the convergences in the conjugate gradient iteration for the solution of the pressure Poisson equation are compared among the mixed method, the GPJ method and the present method for both leaky and non‐leaky 3‐D driven cavity flows. Finally, the non‐leaky 3‐D cavity flows at different Re numbers are solved to compare with the literature data and to demonstrate the accuracy of the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
An unstructured non‐nested multigrid method is presented for efficient simulation of unsteady incompressible Navier–Stokes flows. The Navier–Stokes solver is based on the artificial compressibility approach and a higher‐order characteristics‐based finite‐volume scheme on unstructured grids. Unsteady flow is calculated with an implicit dual time stepping scheme. For efficient computation of unsteady viscous flows over complex geometries, an unstructured multigrid method is developed to speed up the convergence rate of the dual time stepping calculation. The multigrid method is used to simulate the steady and unsteady incompressible viscous flows over a circular cylinder for validation and performance evaluation purposes. It is found that the multigrid method with three levels of grids results in a 75% reduction in CPU time for the steady flow calculation and 55% reduction for the unsteady flow calculation, compared with its single grid counterparts. The results obtained are compared with numerical solutions obtained by other researchers as well as experimental measurements wherever available and good agreements are obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A new fourth‐order compact formulation for the steady 2‐D incompressible Navier–Stokes equations is presented. The formulation is in the same form of the Navier–Stokes equations such that any numerical method that solve the Navier–Stokes equations can easily be applied to this fourth‐order compact formulation. In particular, in this work the formulation is solved with an efficient numerical method that requires the solution of tridiagonal systems using a fine grid mesh of 601 × 601. Using this formulation, the steady 2‐D incompressible flow in a driven cavity is solved up to Reynolds number with Re = 20 000 fourth‐order spatial accuracy. Detailed solutions are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A new Boundary Integral Equation (BIE) formulation for Stokes flow is presented for three-dimensional and axisymmetrical problems using non-primitive variables, assuming velocity field is prescribed on the boundary. The formulation involves the vector potential, instead of the classical stream function, and all three components of the vorticity are implied. Furthermore, following the Helmholtz decomposition, a scalar potential is added to represent the solenoidal velocity field. Firstly, the BIEs for three-dimensional flows are formulated for the vector potential and the vorticity by employing the fundamental solutions in free space of vector Laplace and biharmonic equations. The equations for axisymmetric flows are then derived from the three-dimensional formulation in a second step. The outcome is a domain integral free BIE formulation for both three-dimensional and axisymmetric Stokes flows with prescribed velocity boundary condition. Numerical results are included to validate and show the efficiency of the proposed axisymmetric formulation.  相似文献   

11.
We recently proposed a transformation‐free higher‐order compact (HOC) scheme for two‐dimensional (2‐D) steady convection–diffusion equations on nonuniform Cartesian grids (Int. J. Numer. Meth. Fluids 2004; 44 :33–53). As the scheme was equipped to handle only constant coefficients for the second‐order derivatives, it could not be extended directly to curvilinear coordinates, where they invariably occur as variables. In this paper, we extend the scheme to cylindrical polar coordinates for the 2‐D convection–diffusion equations and more specifically to the 2‐D incompressible viscous flows governed by the Navier–Stokes (N–S) equations. We first apply the formulation to a problem having analytical solution and demonstrate its fourth‐order spatial accuracy. We then apply it to the flow past an impulsively started circular cylinder problem and finally to the driven polar cavity problem. We present our numerical results and compare them with established numerical and analytical and experimental results whenever available. This new approach is seen to produce excellent comparison in all the cases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A high‐order compact finite‐difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth‐order compact FD scheme, and the temporal term is discretized with the fourth‐order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high‐order spectral‐type low‐pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also conducted to evaluate the effects of grid size, filtering, and procedure of boundary conditions implementation on accuracy and convergence rate of the solution. The accuracy and efficiency of the proposed solution procedure based on the CFDLBM method are also examined by comparison with the classical LBM for different flow conditions. Two test cases considered herein for validating the results of the incompressible steady flows are a two‐dimensional (2‐D) backward‐facing step and a 2‐D cavity at different Reynolds numbers. Results of these steady solutions computed by the CFDLBM are thoroughly compared with those of a compact FD Navier–Stokes flow solver. Three other test cases, namely, a 2‐D Couette flow, the Taylor's vortex problem, and the doubly periodic shear layers, are simulated to investigate the accuracy of the proposed scheme in solving unsteady incompressible flows. Results obtained for these test cases are in good agreement with the analytical solutions and also with the available numerical and experimental results. The study shows that the present solution methodology is robust, efficient, and accurate for solving steady and unsteady incompressible flow problems even at high Reynolds numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the uniqueness of solution for internal bounded unsteady flows of a shortmemory fluid is first established. Closed-form solutions are then obtained for the equations characterizing flows of such fluids in circular and rectangular tubes of uniform cross-section under an arbitrary pressure gradient. Special cases including the oscillatory flow between two parallel plates are discussed.  相似文献   

14.
A numerical investigation is performed to study the solution of natural and mixed convection flows by Galerkin‐characteristic method. The method is based on combining the modified method of characteristics with a Galerkin finite element discretization in primitive variables. It can be interpreted as a fractional step technique where convective part and Stokes/Boussinesq part are treated separately. The main feature of the proposed method is that, due to the Lagrangian treatment of convection, the Courant–Friedrichs–Lewy (CFL) restriction is relaxed and the time truncation errors are reduced in the Stokes/Boussinesq part. Numerical simulations are carried out for a natural convection in squared cavity and for a mixed convection flow past a circular cylinder. The computed results are compared with those obtained using other Eulerian‐based Galerkin finite element solvers, which are used for solving many convective flow models. The Galerkin‐characteristic method has been found to be feasible and satisfactory. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Turbulent flows over lifting surfaces exhibiting trailing-edge vortex shedding often cause adverse and complex phenomena, such as self-induced vibration and noise. In this paper, a numerical study on flow past a blunt-edged two-dimensional NACA 0015 section and the same section with various base cavity shapes and sizes at high Reynolds numbers has been performed using the unsteady Reynolds-averaged Navier–Stokes (URANS) approach with the realisable κε turbulence model. The equations are solved using the control volume method of second-order accuracy in both spatial and time domains. The assessment of the application of URANS for periodic trailing-edge flow has shown that reasonable agreement is achieved for both the time-averaged and fluctuating parameters of interest, although some differences exist in the prediction of the near-wake streamwise velocity fluctuation magnitudes. The predicted Strouhal numbers of flows past the squared-off blunt configuration with varying degrees of bluntness agree well with published experimental measurements. It is found that the intensity of the vortex strengths at the trailing-edge is amplified when the degree of bluntness is increased, leading to an increase in the mean square pressure fluctuations. The numerical prediction shows that the presence of the base cavity at the trailing-edge does not change the inherent Strouhal number of the 2D section examined. However, it does have an apparent effect on the wake structure, local pressure fluctuations and the lift force fluctuations. It is observed that the size of the cavity has more influence on the periodic trailing-edge flow than its shape does.  相似文献   

16.
Numerical calculations of the 2‐D steady incompressible driven cavity flow are presented. The Navier–Stokes equations in streamfunction and vorticity formulation are solved numerically using a fine uniform grid mesh of 601 × 601. The steady driven cavity flow solutions are computed for Re ? 21 000 with a maximum absolute residuals of the governing equations that were less than 10?10. A new quaternary vortex at the bottom left corner and a new tertiary vortex at the top left corner of the cavity are observed in the flow field as the Reynolds number increases. Detailed results are presented and comparisons are made with benchmark solutions found in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
《Fluid Dynamics Research》2006,38(2-3):145-173
In this paper, direct numerical simulations (DNS) and large eddy simulations (LES) of three engineering flows carried out in the author's research group are presented. The first example, simulated both with DNS and LES, is the flow in a low-pressure turbine cascade with wakes passing periodically through the cascade channel. In this situation, the laminar–turbulent transition of the boundary layers on the blade surfaces, which is strongly influenced by the passing wakes, is of special interest. Next, LES of the flow past the Ahmed body is presented, which is a car model with slant back. In spite of the fairly simple geometry, the flow around the model has many features of the complex, fully 3D flow around real cars. The third example, for which LES is presented, is the flow past a surface mounted circular cylinder of height-to-diameter ratio of 2.5. In this case also complex 3D flow develops with interaction of various vortices behind the cylinder. By means of these examples, the paper shows that complex turbulent flows of engineering relevance can be predicted realistically by DNS and LES, albeit at large cost. The methods are particularly suited and superior to RANS methods for situations where unsteadiness like shedding and large-scale structures dominate the flow, and DNS has evolved into an important tool for studying transition mechanisms.  相似文献   

18.
Thedifferentialquadraturemethod(DQM)proposedbyR.Bellman[1,2]hasbeensuccessfullyemployedinnumericalcomputationsofproblemsinengineeringandphysicalscience.BecausetheinformationonallgridpointsisusedtofitthederivativesatgridpointsintheDQM,itisenoughtoobta…  相似文献   

19.
A collocated discretization of the 3D steady incompressible Navier–Stokes equations based on a flux-difference-splitting formulation is presented. The discretization employs primitive variables of Cartesian velocity components and pressure. The splitting used here is a polynomial splitting introduced by Dick and Linden of Roe type. Second-order accuracy is obtained with the defect correction approach in which the state vector is inter-polated with van Leer's κ-scheme. The underlying solution technique to solve the discretized equations is a parallel multiblock multigrid method. Several 2D and 3D test problems such as driven cavity and channel flows are solved.  相似文献   

20.
As a fundamental subject in fluid mechanics, sophisticated cavity flow patterns due to the movement of multi-lids have been routinely analyzed by the computational fluid dynamics community. Unlike those reported computational studies that were conducted using more conventional numerical methods, this paper features employing the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) to numerically investigate the two-dimensional cavity flows generated by the movements of two adjacent lids. The obtained MRT-LBM results reveal a number of important bifurcation flow features, such as the symmetry and steadiness of cavity flows at low Reynolds numbers, the multiplicity of stable cavity flow patterns when the Reynolds number exceeds its first critical value, as well as the periodicity of the cavity flow after the second critical Reynolds number is reached. Detailed flow characteristics are reported that include the critical Reynolds numbers, the locations of the vortex centers, and the values of stream function at the vortex centers. Through systematic comparison against the simulation results obtained elsewhere by using the lattice Bhatnagar–Gross–Krook model and other numerical schemes, not only does the MRT-LBM approach exhibit fairly satisfactory accuracy, but also demonstrates its remarkable flexibility that renders the adjustment of its multiple relaxation factors fully manageable and, thus, particularly accommodates the need of effectively investigating the multiplicity of flow patterns with complex behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号