首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to design and optimise sonochemical reactors it is important to study the impact of liquid level, or path length, on the standing wave phenomena and the influence this has on temperature increase and OH radical rate of production. In this work, an ultrasonic tower type reactor operating at 70 kHz is investigated with results from variations to liquid levels reported. Calorimetry data was obtained using a modified reactor set up with temperature change monitored at selected points within the chamber. OH radical rate of formation was shown via chemical dosimetry, following the conversion of terephthalic acid (TA) to 2-hydroxyterephthalic acid (HTA). The results obtained have shown that changes in solution depth of a few millimetres significantly impacts on the interaction of the propagated and reflected waveforms with the results of calorific measurements and HTA rates of formation varying by 90% (750 J) and 88% (80 mmol dm(-3) min(-1)) between the operational extremes over the studied depth range.  相似文献   

2.
There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 °C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol–water with 80 W ultrasonic power for 3 h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80 W as compared to MS process both using 1:1 ethanol–water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from reflectance measurement. Therefore, the present study clearly offers efficient extraction methodology from natural dye resources such as beetroot with ultrasound even dispensing with external heating. Thereby, also making eco-friendly non-toxic dyeing of fibrous substances a potential viable option.  相似文献   

3.
Correlations to predict droplet size in ultrasonic atomisation.   总被引:2,自引:0,他引:2  
R Rajan  A B Pandit 《Ultrasonics》2001,39(4):235-255
In conventional two fluid nozzles, the high velocity air imparts its energy to the liquid and disrupts the liquid sheet into droplets. If the energy for liquid sheet fragmentation can be supplied by the use of ultrasonic energy, finer droplets with high sphericity and uniform size distribution can be achieved. The other advantage of ultrasound induced atomisation process is the lower momentum associated with ejected droplets compared to the momentum carried by the droplets formed using conventional nozzles. This has advantage in coating and granulation processes. An ultrasonic probe sonicator was designed with a facility for liquid feed arrangement and was used to atomise the liquid into droplets. An ingenious method of droplet measurement was attempted by capturing the droplets on a filter paper (size variation with regard to wicking was uniform in all cases) and these are subjected to image analysis to obtain the droplet sizes. This procedure was evaluated by high-speed photography of droplets ejected at one particular experimental condition and these were image analysed. The correlations proposed in the literature to predict droplet sizes using ultrasound do not take into account all the relevant parameters. In this work, a truly universal correlation is proposed which accounts for the effects of physico-chemical properties of the liquid (flow rate, viscosity, density and surface tension), and ultrasonic properties like amplitude, frequency and the area of vibrating surface. The significant contribution of this work is to define dimensionless numbers incorporating ultrasonic parameters, taking cue from the conventional numbers that define the significance of different forces involved in droplet formation. The universal correlations proposed are robust and can be used for designing ultrasonic atomisers for different applications. Among the correlations proposed here, those ones that are based on the dimensionless numbers and Davies approach predict droplet sizes within acceptable limits of deviation. Also, an empirical correlation from experimental data has been proposed in this work.  相似文献   

4.
不同超声作用方式对葛根有效部位提取率的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
研究不同的超声作用方式对葛根总黄酮的提取率的影响.采用单频,双频(包括槽式双频以及槽式+探头式双频),及三频等不同的处理方法,对超声作用参数,如时间,声强及处理量的多少进行研究,采用两个超声特性参数即能量效率和空化产量来对比不同容积、频率的超声作用效果.目前的研究表明:多频超声耦合时,可以获得较高的能量效率和空化产量.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(4):1592-1599
In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization.  相似文献   

6.
The sonoelectrochemical treatment of aqueous solutions of trichloroacetic acid (TCAA) has been scaled-up from the voltammetric analysis to pre-pilot stage. The degradation in absence of ultrasound field has yield to a poor performance which has been improved in presence of ultrasound. The sonovoltametry study has provided the range of potentials and/or current densities to be used with the lowest current efficiency penalty. Sonoelectrolyses at batch scale (carried out with a horn-transducer 24 kHz positioned at about 3 cm from the surface of the electrode) achieved little improvement in the degradation. However, when a specifically designed sonoelectrochemical reactor (not optimized) was used during the scale-up, the presence of ultrasound field provided better results (fractional conversion 97%, degradation efficiency 26%, selectivity 0.92 and current efficiency 8%) at lower ultrasonic intensities and volumetric flow.  相似文献   

7.
With the development of oil recovery technology, ultrasonic technology has been involved in oil production and oilfield development. The mechanism of ultrasonic wave plugging in near well is different from the conventional oil recovery technology. Ultrasonic oil production technique is an effective method to enhance oil production with low cost, good applicability, and no environmental pollution. The core part of ultrasonic oil production equipment for Enhanced Oil Recovery is a high-power ultrasonic transducer. The continuous high-power ultrasound is used to treat the reservoir, which changes the pore structure, the physical property and the state of the fluid, thus improving the permeability and flows conditions of the reservoir, and increasing the oil yield and oil recovery. Ultrasonic oil recovery equipment includes the generation of high-power ultrasonic signals, long-distance transmission and the conversion of electrical energy to acoustic energy. In this paper, state-of-the-art on the development of ultrasonic oil production devices for Enhanced Oil Recovery in China is introduced. The purpose of this paper is to provide a reference for the development of high-power ultrasonic oil extraction equipment and its promotion in tertiary oil recovery technology.  相似文献   

8.
利用低官能度的丙烯酸酯单体进行全息液晶/聚合物光栅的制备, 获得了具有聚合物支撑形貌的光栅结构. 由于这种光栅内部不存在液晶微滴, 当作为分布反馈式激光器的谐振腔时, 可以有效降低光栅内部的散射损失(<4%), 降低激光腔损耗. 此外, 选用的高折射率单体提升了光栅的折射率调制量, 增强了光栅的反馈增益. 在以上两种因素的共同作用下, 采用染料DCM为激光工作物质, 以532 nm的Nd:YAG脉冲激光器作为抽运光源, 最终获得了中心波长为635 nm, 转化效率为1.2%的高性能激光, 在以阈值能量0.8 μJ/pulse抽运下获得激光线宽0.3 nm, 较之国内外同类激光器的报道, 在阈值、线宽、转化效率三方面均有不同程度提升.  相似文献   

9.
Sonochemical and sonocatalytic degradation of monolinuron in water   总被引:1,自引:0,他引:1  
The degradation of the phenylurea monolinuron (MLN) by ultrasound irradiation alone and in the presence of TiO(2) was investigated in aqueous solution. The experiments were carried out at low and high frequency (20 and 800 kHz) in complete darkness. The degradation of MLN by ultrasounds occurred mainly by a radical pathway, as shown the inhibitory effect of adding tert-butanol and bicarbonate ions to scavenge hydroxyl radicals. However, CO(3)(-) radicals were formed with bicarbonate and reacted in turn with MLN. In this study, the degradation rate of MLN and the rate constant of H(2)O(2) formation were used to evaluate the oxidative sonochemical efficiency. It was shown that ultrasound efficiency was improved in the presence of nanoparticles of TiO(2) and SiO(2) only at 20 kHz. These particles provide nucleation sites for cavitation bubbles at their surface, leading to an increase in the number of bubbles when the liquid is irradiated by ultrasound, thereby enhancing sonochemical reaction yield. In the case of TiO(2), sonochemical efficiency was found to be greater than with SiO(2) for the same mass introduced. In addition to the increase in the number of cavitation bubbles, activated species may be formed at the TiO(2) surface that promote the formation of H(2)O(2) and the decomposition of MLN.  相似文献   

10.
Colorimetric methods are still important for determining nitrate and nitrite. A critical step in the use of these methods to determine nitrate in low concentrations is the reaction time required to totally reduce nitrate to nitrite, i.e., 24h in the dark. This work involved a study of the influence of ultrasonic irradiation on the nitrate reduction reaction by hydrazine. Our findings indicated that ultrasonic irradiation, associated with copper(II) ion as a catalyst, increased the redox reaction rate, decreasing the reaction time to about 10min when the power of the ultrasonic irradiation was set in 14.0357W. The strong influence of the ultrasonic irradiation in the reduction reaction rates can be sustained by an excellent linear correlation (R(2)=0.9993) between the kinetic constants and ultrasonic powers. Nitrate conversion also increased from 68% to 98% at the latter conditions. It thus become clear that high intensity ultrasound is very beneficial for this reduction reaction to proceed in good yield and in short reaction time in comparison to its silent reaction.  相似文献   

11.
In this study, several process parameters that may contribute to the efficiency of ultrasound disinfection are examined on a pilot scale water disinfection system that mimics realistic circumstances as encountered in an industrial environment. The main parameters of sonication are: (i) power; (ii) duration of treatment; (iii) volume of the treated sample. The specific energy (Es) is an indicator of the intensity of the ultrasound treatment because it incorporates the transferred power, the duration of sonication and the treated volume. In this study, the importance of this parameter for the disinfection efficiency was assessed through changes in volume of treated water, water flow rate and electrical power of the ultrasonic reactor. In addition, the influences of the initial bacterial concentration on the disinfection efficiency were examined. The disinfection efficiency of the ultrasonic technique was scored on a homogenous and on a mixed bacterial culture suspended in water with two different types of ultrasonic reactors (Telsonic and Bandelin). This study demonstrates that specific energy, treatment time of water with ultrasound and number of passages through the ultrasonic reactor are crucial influential parameters of ultrasonic disinfection of contaminated water in a pilot scale water disinfection system. The promising results obtained in this study on a pilot scale water disinfection system indicate the possible application of ultrasound technology to reduce bacterial contamination in recirculating process water to an acceptable low level. However, the energy demand of the ultrasound equipment is rather high and therefore it may be advantageous to apply ultrasound in combination with another treatment.  相似文献   

12.
In order to undertake irradiation of polymer blocks or films by ultrasound, this paper deals with the measurements of ultrasonic power and its distribution within the cell by several methods. The electric power measured at the transducer input is compared to the ultrasonic power input to the cell evaluated by calorimetry and radiation force measurement for different generator settings. Results obtained in the specific case of new transducer types (composites and focused composites i.e., HIFU: high intensity focused ultrasound) provide an opportunity to conduct a discussion about measurement methods. It has thus been confirmed that these measurement techniques can be applied to HIFU transducers. For all cases, results underlined the fact that measurement of radiation pressure for power evaluation is more adapted to low powers (<15 W) and that measurement by calorimetry is a valid technique for global energy measurements. Composites and monocomponent transducers were compared and it appears that the presence of an adaptation glass plate reduces the efficiency of the monocomponent transducers. The distribution of ultrasonic intensity is qualitatively depicted by sono-chemiluminescence of luminol. Finally, the quantity of energy absorbed by samples placed in the sound field is determined and the temperature distribution monitored as a function of wall distance. This energetic balance allows us to understand the global behaviour of all experimental set-ups made up of a generator–transducer–liquid and sample.  相似文献   

13.
In this research work, dextranase has immobilized onto calcium alginate beads using a novel ultrasound method. The process of immobilization of the enzyme was carried out in a one-step ultrasound process. Effects of ultrasound conditions on loading efficiency and immobilization yield of the enzyme onto calcium alginate beads were investigated. Furthermore, the activity of the free and immobilized enzymes prepared with and without ultrasound treatment, as a function of pH, temperature, recyclability and enzyme kinetic parameters, was compared. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with an ultrasonic irradiation at 25 kHz, 40 W for 15 min, under which the loading efficiency and the immobilization yield increased by 27.21% and 18.77%, respectively, compared with the immobilized enzymes prepared without ultrasonic irradiation. On the other hand, immobilized enzyme prepared with ultrasonic irradiation showed Vmax and KM value higher than that for the immobilized enzyme prepared without ultrasonic irradiation, likewise, both the catalytic and specificity constants of immobilized enzyme prepared with ultrasonic irradiation were higher than that for immobilized enzyme prepared without ultrasound, indicating that, this new ultrasonic method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared with immobilized enzyme prepared without ultrasound treatment, the immobilized enzymes prepared with ultrasound irradiation exhibited: a higher pH optimum, optimal reaction temperature, activation energy, and thermal stability, as well as, a higher recyclability, which, illustrating the effectiveness of the sonochemical method. To the best of our knowledge, this is the first report on the effect of ultrasound treatments on the immobilization of dextranase.  相似文献   

14.
The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.  相似文献   

15.
《Ultrasonics》1987,25(1):49-55
Several measurement methods (thermocouple probe, perforation of aluminium foils by cavitation, chemical dosimeter) are used to characterize the sound fields of low and high intensity ultrasound reactors and to find optimal conditions for the ultrasonic irradiation of heterogeneous reaction mixtures. In this Paper it is shown that, due to the formation of standing waves, the local ultrasound intensity in a flask fixed in an ultrasonic cleaner is strongly susceptible to small changes in experimental conditions. It is also shown that high intensity ultrasound sources, such as an ultrasonic horn, tend to uncouple: that is, cavitation only occurs at the radiating surface and only marginal ultrasound intensity can be detected elsewhere in the surrounding liquid.  相似文献   

16.
The extraction of rutin from flower buds of Sophora japonica.   总被引:9,自引:0,他引:9  
The efficiency of extraction of rutin from Sophora japonica is improved by ultrasound but is dependent on the solvent employed. Rutin is a compound with antioxidant activity and aqueous solvents appear to be unsuitable for ultrasonic extractions due to the formation of free radicals from the insonation of the solvent. The application of ultrasound to methanolic extraction gave a significant reduction in extraction time and an increase in maximum yield.  相似文献   

17.
Ultrasonically promoted nitrolysis of DAPT to HMX in ionic liquid   总被引:2,自引:0,他引:2  
The present work aims at developing a new process to synthesize HMX from DAPT using ultrasound in ionic liquid. Reaction has been carried out in ultrasonic bath, effect of various parameters such as presence and absence of ultrasound, volume and type of solvent, temperature, concentration of nitrating agent has been investigated with an aim of obtaining the optimum conditions for the synthesis of HMX. It was observed that ultrasonically promoted nitroylsis of DAPT to HMX has exhibited significant enhancement in yield at ambient condition.  相似文献   

18.
The effect of sonication on microbial disinfection using hypochlorite   总被引:4,自引:0,他引:4  
Ultrasound alone is capable of killing bacteria when sufficient power is applied but ultrasound at low powers can also be used to improve the effectiveness biocides. In this paper, we explore the effect of the timing of the ultrasonic treatment at 20 and 850 kHz on the biocidal efficiency of sodium hypochlorite solution towards Escherchia coli suspensions. A remarkable frequency effect has been noted. At the lower frequency of 20 kHz the improvement in biocidal activity is greatest when the ultrasound is applied at the same time as the hypochlorite. At the higher frequency of 850 kHz the improvement is best when ultrasound is used as a pre-treatment immediately followed by hypochlorite addition under normal (silent) conditions. The kill rate achieved for pre-treatment using 850 kHz and simultaneous treatment using 20 kHz are very similar. However the former involves less acoustic energy and so is considered to be the more efficient.  相似文献   

19.
Ultrafiltration (UF) of whey is a major membrane based process in the dairy industry. However, commercialization of this application has been limited by membrane fouling, which has a detrimental influence on the permeation rate. There are a number of different chemical and physical cleaning methods currently used for cleaning a fouled membrane. It has been suggested that the cleaning frequency and the severity of such cleaning procedures control the membrane lifetime. The development of an optimal cleaning strategy should therefore have a direct implication on the process economics. Recently, the use of ultrasound has attracted considerable interest as an alternative approach to the conventional methods. In the present study, we have studied the ultrasonic cleaning of polysulfone ultrafiltration membranes fouled with dairy whey solutions. The effects of a number of cleaning process parameters have been examined in the presence of ultrasound and results compared with the conventional operation. Experiments were conducted using a small single sheet membrane unit that was immersed totally within an ultrasonic bath. Results show that ultrasonic cleaning improves the cleaning efficiency under all experimental conditions. The ultrasonic effect is more significant in the absence of surfactant, but is less influenced by temperature and transmembrane pressure. Our results suggest that the ultrasonic energy acts primarily by increasing the turbulence within the cleaning solution.  相似文献   

20.
In order to improve the efficiency of ultrasonic energy transformed from electricity for an ultrasonic transducer array, a novel 1/2 wavelength multi-hole broadband-based transducer was designed, developed and evaluated. The low equivalent mass of the transducer is realized in this work through drilling holes on the output end of the horn. In comparison with a traditional transducer, the developed transducer has demonstrated a lower mechanical quality coefficient and a wider broadband. As a result, an ultrasound treatment system for crude oil has been developed based on the new transducer design. Furthermore, we have demonstrated the effectiveness of the ultrasound treatment system on viscosity reduction of crude oil and paraffin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号