首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xu Hun  Zhouping Wang 《Mikrochimica acta》2012,176(1-2):209-216
A sensitive method is presented for the detection of L-argininamide. It is based on the amplification of the hydrolysis of S1 nuclease of single-stranded regions of an aptamer-target complex. The S1 nuclease, which is sequence-independent, is used to “recycle” target molecules, thus leading to strongly enhanced chemiluminescence (CL). L-Argininamide was chosen as model analyte. The DNA aptamer and its complementary DNA were labeled with the CL reagent N-(4-aminobutyl)-N-ethylisoluminol (ABEI). The DNA complementary to the aptamer was labeled with ABEI and immobilized on magnetic beads (MBs) coated with gold. The aptamer was also labeled with ABEI and self-assembled on the MBs. A duplex was formed due to hybridization between the DNA aptamer and the DNA complementary to the aptamer. In the presence of the target L-argininamide, a stem-loop aptamer structure is formed which subsequently denatures the duplex. This switch from a duplex structure to a stem-loop structure causes the formation of single-stranded regions both in the target-aptamer and in the single-stranded DNA on the MBs. The nuclease hydrolyzes the single-stranded regions and single-stranded DNA. Ultimately, L-argininamide is released which then interacts with another aptamer on the MB, thereby leading to one more L-argininamide. This autocatalytic cycle can generate substantial quantities of ABEI which then can be sensitively determined by the diperiodatonickelate-isoniazide reaction system. L-argininamide can be detected in the concentration range from 3.0?×?10?4 to 3.0?×?10?7 M, and the limit of detection is 1.0?×?10?7 M.
Figure
A enantiomer assay for detection of L-argininamide was developed based on S1 nuclease hydrolysis of single-stranded regions of aptamer-target complex and the releasing of the L-argininamide. The released L-argininamide can then interact with another aptamer leading to many signal probes be generated. The L-argininamide assay exhibits high sensitivity and specificity.  相似文献   

2.
We describe a simple, environmentally friendly and selective technique for the determination of ochratoxin A (OTA) in urine. It involves (a) the use of a molecularly imprinted polymer as a sorbent in micro-solid-phase extraction in which the sorbent is contained in a propylene membrane envelope, and (b) separation and detection by capillary electrophoresis (CE). Under optimized conditions, response is linear in the range between 50 and 300 ng mL?1 (with a correlation coefficient of 0.9989), relative standard deviations range from 4 to 8 %, the detection limit for OTA in urine is 11.2 ng mL?1 (with a quantification limits of 32.5 ng mL?1) which is lower than those of previously reported methods for solid-phase extraction combined with CE. The recoveries of OTA from urine spiked at levels of 50, 150 and 300 ng mL?1 ranged from 93 to 97 %.
Figure
?  相似文献   

3.
Graphene-based magnetic nanoparticles (G-Fe3O4) were prepared and used as an effective adsorbent for the solid-phase extraction of trace quantities of cadmium from water and vegetable samples. The method avoids some of the time-consuming steps associated with traditional solid phase extraction. The excellent sorption property of the G-Fe3O4 system is attributed to π - π stacking interaction and hydrophobic interactions between graphene and the Cd-PAN complex. The effects of pH, the amount of G–Fe3O4, extraction time, type and volume of eluent, desorption time and interfering ions on the extraction efficiency were optimized. The preconcentration factor is 200. Cd(II) was then quantified by flame atomic absorption spectrometry with a detection limit of 0.32 ng mL?1. The relative standard deviation (at 50 ng mL?1; for n?=?10) is 2.45 %. The method has a linear analytical range from 1.1 to 150 ng mL?1, and the recoveries in case of real samples are in the range between 93.1 % and 102.3 %.
Figure
General procedure for magnetic preconcentration of cadmium ions from aqueous solution using graphene-based magnetic nanoparticles  相似文献   

4.
We report on a combination of magnetic solid-phase extraction and spectrophotometric determination of bromate. Cetyltrimethylammonium ion was adsorbed on the surface of phenyl-functionalized silica-coated Fe3O4 nanoparticles (Ph-SiO2@Fe3O4), and these materials served as the sorbent. The effects of surfactant and amount of sorbent, the composition of the desorption solution, the extraction time and temperature were optimized. Under optimized conditions, an enrichment factor of 12 was achieved, and the relative standard deviation is 2.9 % (for n?=?5). The calibration plot covers the 1–50 ng mL?1 range with reasonable linearity (r 2?>?0.998); and the limit of detection is 0.5 ng mL?1. The method is not interfered by ionic compounds commonly found in environmental water samples. It was successfully applied to the determination of bromate in spiked water samples.
Figure
Extraction of bromate ions using surfactant-coated phenyl functionalized Fe3O4 magnetic nanoparticles followed by spectrophotometric detection.  相似文献   

5.
We report that magnetic multiwalled carbon nanotubes functionalized with 8-aminoquinoline can be applied to the preconcentration of Cd(II), Pb(II) and Ni(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount, and pH value) were selected as the main factors affecting sorption, and four variables (type, volume and concentration of the eluent; elution time) were selected for optimizing elution. Following sorption and elution, the ions were quantified by FAAS. The LODs are 0.09, 0.72, and 1.0 ng mL?1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <5.1 % for five separate batch determinations at 30 ng mL?1 level of Cd(II), Ni(II), and Pb(II) ions. The sorption capacities (in mg g?1) of this new sorbent are 201 for Cd(II), 150 for Pb(II), and 172 Ni(II). The composite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of functionalized magnetic multiwalled carbon nanotube.  相似文献   

6.
The anti-schizophrenic drug risperidone (RSP) exerts an inhibitory effect on the chemiluminescence (CL) of the luminol-lysozyme system. This finding forms the basis for a sensitive flow injection method for its determination at picogram levels. RSP binds to Trp62 in the lysozyme, and this leads to a conformational change upon which the CL of the system is quenched. The decrease in CL is proportional to the logarithm of the concentration of RSP, and the calibration graph is linear in the range from 0.1 pg?mL?1 to 1.0 ng?mL?1, with relative standard deviations of <5.0%, and a detection limit of 0.05 pg?mL?1 (3σ). At a flow rate of 2.0 mL?min?1, the whole process including sampling and washing is completed within 20 s. The method was successfully applied to monitoring RSP in human urine after incorporation of 2 mg of RSP, with a total excretion of 16.6% within 8.5 h.
Figure
The reaction of lysozyme with risperidone using luminol as luminescence reagent by the luminol-lysozyme FI-CL system and its application.  相似文献   

7.
We describe a simple method for the synthesis of highly magnetic and fluorescent bifunctional chitosan nanoparticles (MF-CSNPs). Water-soluble and magnetic Fe3O4-chitosan nanoparticles and CdSe quantum dots capped with thioglycolic acid were incorporated into a chitosan matrix via electrostatic interaction. The optical, magnetic, crystallographic and morphological properties of the new nanoparticles were studied by UV-visible, fluorescence, X-ray diffraction and transmission electron microscopy. In addition, MF-CSNPs are found to be a useful probe for the determination of copper ion which acts as a quencher of fluorescence. The relative fluorescence intensity of MF-CSNPs is linearly related to the concentration of copper ion in the 0.125 to 25 ng·mL-1 concentration range. The MF-CSNPs also are found to adsorb copper ion which therefore can be separated and enriched by manipulating them with an external magnetic field. Before enrichment, the limit of detection (LOD) for copper ion is 120 pg·mL-1, but after enrichment, the LOD is 46 pg·mL-1.
Figure
High magnetic and fluorescent bifunctional chitosan nanoparticles (MF-CSNPs) have been successfully synthesized via electrostatic interaction. MF-CSNPs are shown to represent a quenchable fluorescent probe for the detection of copper ion in water solution.  相似文献   

8.
We report on the use of hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples. The effects of pH of the donor phase, stirring rate, ionic strength and extraction time on HF-LLLME were optimized. Under the optimized conditions, the linear range of the calibration curves for dextromethorphan in plasma and urine, respectively, are from 1.5 to 150 and from 1 to 100 ng mL?1. The ranges for pseudoephedrine, in turn, are from 30 to 300 and from 20 to 200 ng mL?1. Correlation coefficients are better than 0.9903. The limits of detection are 0.6 and 0.3 ng mL?1 for dextromethorphan, and 8.6 and 4.2 ng mL?1 for pseudoephedrine in plasma and urine samples, respectively. The relative standard deviations range from 6 to 8%.
Figure
Hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry (CD-IMS) was used for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples.  相似文献   

9.
We describe a new method for differential-pulse anodic stripping voltammetric determination of thallium(I) using a carbon paste electrode modified with dicyclohexyl-18-crown-6. The effect of supporting electrolyte (type and pH), accumulation and reduction potential, and of time and amount of modifier were investigated by differential pulse anodic stripping voltammetry. A method was then worked out for the determination of thallium at low levels. Under optimized conditions, the response to Tl(I) is linear in the range from 3.0 to 250 ng mL?1. The detection limit is 0.86 ng mL?1. The sensor displays good repeatability (with a relative standard deviation of ±2.70 % for n?=?7) and was applied to the determination of Tl(I) in water, hair samples, and certified reference materials.
Figure
Crown ethers allow only some ions to entry and complex formation that their sizes equal to ether cavity.  相似文献   

10.
We describe a novel magnetic metal-organic framework (MOF) prepared from dithizone-modified Fe3O4 nanoparticles and a copper-(benzene-1,3,5-tricarboxylate) MOF and its use in the preconcentration of Cd(II), Pb(II), Ni(II), and Zn(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, amount of the magnetic sorbent, and pH value) were selected as the main factors affecting adsorption, while four variables (type, volume and concentration of the eluent; desorption time) were selected for desorption in the optimization study. Following preconcentration and elution, the ions were quantified by FAAS. The limits of detection are 0.12, 0.39, 0.98, and 1.2 ng mL?1 for Cd(II), Zn(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations were <4.5 % for five separate batch determinations of 50 ng mL?1 of Cd(II), Zn(II), Ni(II), and Pb(II) ions. The adsorption capacities (in mg g?1) of this new MOF are 188 for Cd(II), 104 for Pb(II), 98 Ni(II), and 206 for Zn(II). The magnetic MOF nanocomposite has a higher capacity than the Fe3O4/dithizone conjugate. This magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of magnetic MOF-DHz nanocomposite.  相似文献   

11.
We report on an ultrasensitive fluorescence immunoassay for human chorionic gonadotrophin antigen (hCG). It is based on the use of silica nanoparticles coated with a copolymer (prepared from a fluorene, a phenylenediamine, and divinylbenzene; PF@SiO2) that acts as a fluorescent label for the secondary monoclonal antibody to β-hCG antigen. In parallel, Fe3O4 nanoparticles were coated with polyaniline, and these magnetic particles (Fe3O4@PANI) served as a solid support for the primary monoclonal antibody to β-hCG antigen. The PF@SiO2 exhibited strong fluorescence and good dispersibility in water. A fluorescence sandwich immunoassay was developed that enables hCG concentrations to be determined in the 0.01–100 ng·mL?1 concentration range, with a detection limit of 3 pg·mL?1.
Figure
Fluorescence detection of prepared immune reagent nano-composites using the fluorescence cell  相似文献   

12.
We report on label-free immunosensors for the highly sensitive detection of avian influenza virus. The method makes use of the microcantilevers of an atomic force microscope onto which monoclonal antibodies against avian influenza virus were covalently immobilized. The factors influencing the performance of the resulting immunosensors were optimized by measuring the deflections of the cantilever via optical reflection, and this resulted in low detection limits and a wide analytical range. The differential deflection signals revealed specific antigen binding and their intensity is proportional to the logarithm of the concentrations of the virus in solution. Under optimal conditions, the immunosensors exhibit a linear response in the 7.6 ng mL?1 to 76 μg mL?1 concentration range of avian influenza virus, and the detection limit is 1.9 ng mL?1.
Figure
Label-free immunosensors based on microcantilevers of an atomic force microscope was fabricated by covalently immobilizing monoclonal antibodies to avian influenza virus onto the microcantilever. The performance and factors influencing the performance of the resulting immunosensors were investigated in detail by measuring the cantilever deflections using the optical reflection technique.  相似文献   

13.
A novel test has been developed for the analysis of methadone in dried blood spot specimens from patients undergoing methadone maintenance treatment. An isocratic reversed-phase high-performance liquid chromatography method with coulometric detection has been optimized for the determination of methadone. The clean-up of dried blood spots was performed by means of an original microextraction by packed sorbent procedure after microwave-assisted extraction of the drug with a suitable solvent. Extraction yields were satisfactory, always being higher than 90.0 %. The calibration curve was linear over the 4–500 ng mL-1 concentration range. The method had satisfactory sensitivity (limit of quantitation of 4 ng mL-1), precision (relative standard deviation less than 5.8 %), selectivity and accuracy (recovery greater than 87.0 %). It was successfully applied to dried blood spot samples collected from heroin-addicted patients undergoing methadone maintenance therapy at dosages between 40 and 240 mg day-1. The statistical analysis (Bland–Altman plot) showed that the results were in good agreement with those found from the analysis of plasma samples obtained from the same patients. Thus, the method has proved to be suitable for the monitoring of methadone by means of dried blood spots.
Figure
Bland-Altman plot and methadone disposition in patients undergoing methadone maintenance treatment  相似文献   

14.
Water-soluble cadmium telluride quantum dots (CdTe QDs) capped with glutathione (GSH) display chemiluminescence (CL) emission on reaction with hydrogen peroxide (H2O2) in strongly alkaline medium. It is found that the CL is strongly enhanced on addition of formaldehyde in aqueous solution. A flow injection system was developed, and it is shown that there is good linearity between CL intensity and the concentration of formaldehyde in the 0.06–3.0 μg L?1 range. The limit of detection is as low as 10 ng L?1. The method was successfully applied to the determination of formaldehyde in indoor air after adsorption into an aqueous phase. The recoveries for the real samples range from 97 % to 102.5 %, and the relative standard deviation is <3.8 % for intra- and inter-assay precision.
Figure
Formaldehyde enhances the CL resulting from CdTe quantum dots and H2O2, and this effect is exploited in a simple and sensitive FIA method for the determination of formaldehyde.  相似文献   

15.
We report on a 4-min microwave pyrolytic method for the preparation of fluorescent and water-soluble silicon-hybrid carbon dots (C-dots) with high fluorescent quantum yield. The material is prepared by preheating aminopropyltriethoxysilane and ethylene diamine tetraacetic acid for 1 min, then adding a mixture of poly(ethylene glycol) and glycerin to the solution and heating for another 3 min. It is found that the hybrid carbon dots strongly enhance the chemiluminescence (CL) of the luminol/N-bromosuccinimide system. A study on the enhancement mechanism via CL, fluorescence and electron paramagnetic resonance spectroscopy showed that the effect most probably is due to electrostatic interaction between the C-dots and the luminol anion which facilitates electron transfer from luminol anion to the N-bromosuccinimide oxidant. CL intensity is linearly related to the concentration of the C-dots in the range between 1.25 and 20 μg mL?1. The detection limit is 0.6 μg mL?1 (at an S/N of 3).
Figure
New chemiluminescent enhancement property of the fluorescent silican-hybrid carbon dots in luminol-N-bromosuccinimide system has been explored.  相似文献   

16.
An electrochemical sensor for palytoxin (PlTX) detection, based on a strip of eight screen-printed electrodes connected to a cost-effective and portable apparatus, is reported. Sheep erythrocytes were used to test the palytoxin detector and degree of haemolysis was evaluated by measuring release of the cytosolic lactate dehydrogenase (LDH). Percentage haemolysis and, therefore, the amount of LDH measured, by use of NADH/pyruvate and appropriate electrochemical mediators, was correlated with the concentration of the toxin. Two different electrochemical approaches were investigated for evaluation of LDH release, but only one based on the use of a binary redox mediator sequence (phenazine methosulfate in conjugation with hexacyanoferrate(III)) proved useful for our purpose. After analytical and biochemical characterization, the sensor strip was used to measure palytoxin. Sheep blood and standard solutions of PlTX were left to react for two different incubation times (24 h or 4 h), resulting in working ranges of 7?×?10?3–0.02 ng mL?1 and 0.16–1.3 ng mL?1, respectively. The specificity of the test for palytoxin was evaluated by use of ouabain, which acts in the same way as PlTX on the Na+/K+-ATPase pump. A cross-reactivity study, using high concentrations of other marine biotoxins was also conducted. Experiments to evaluate the matrix effect and recovery from mussels are discussed.
Figure
?  相似文献   

17.
A method was developed for the determination of cadmium(II) by ligand-less solid phase extraction that is based on the direct retention of Cd(II) in a mini-column filled with a silica gel modified with an amino-functionalized ionic liquid. The effects of pH, sample volume and its flow rate, eluent concentration and its volume, the flow rate of eluent, and of potential interferences on extraction and desorption were optimized. Following its determination by electrothermal atomic absorption spectrometry, the detection limit for Cd(II) is 8.9 ng L?1, and the relative standard deviation is 2.3 % (at 1.0 ng mL?1; for n?=?5). The method was applied to the analysis of Cd(II) in a certified reference material (laver; GBW10023), and the recoveries ranged from 97.0 to104.0 %
Figure
◆ Amino-functionalized ionic liquid modified silica gel (NH2-IL/SG) obtained a better absorption for Cd(II) than bare silica gel in the tested pH range due to electrostatic interaction between amino groups and Cd(II).  相似文献   

18.
A new method was developed for the speciation of inorganic arsenic in environmental water by using selective magnetic solid-phase extraction followed by inductively coupled plasma mass spectrometry. It is found that As(V) selectively adsorbed on amino-modified silica-coated magnetic nanoparticles (MNPs) in the pH range from 3 to 8, while As(III) is not be retained. The As(V)-loaded MNPs can be separated easily from the aqueous sample solution by simply applying an external magnetic field. The adsorbed As(V) was quantitatively recovered from the MNPs using using 1 M nitric acid. Total inorganic As was extracted after the permanganate oxidation of As(III) to As(V). Parameters affecting the separation were investigated systematically, and the optimal separation conditions were established. Under the optimal conditions, the limit of detection is 0.21 ng L?1, and the precision is 6.8% (at 10 ng L?1, for n?=?7). The method was applied to the speciation of inorganic arsenic in environmental water of tobacco growing area.
Figure
A new kind of silica-coated magnetic nanoparticles (SCMNPs) modified with AAPTS was synthesized and employed as magnetic solid phase extraction adsorbent for ICP-MS speciation of inorganicAs in environmental water  相似文献   

19.
We report herein a novel chemiluminescence (CL) phenomenon triggered by light irradiation when a fluorescent dye, for example hematoporphyrin, fluorescein, eosin, or methylene blue is present in the luminol solution. A possible mechanism is proposed for the photoinduced chemiluminescence (PICL) reaction. Compared with reported methods for CL triggering, for example flow-injection, static reagent injection, and the electrochemical technique, the proposed in-situ PICL method presented has three advantages. First, the method is more selective, because the PICL signal of the target fluorescent dyes is initiated by excitation at a selective wavelength only. Second, the space and time resolution of the PICL method are better. Last, and most important, compared with injecting a reagent or inserting a electrode into the CL system to initiate the CL reaction, with the in-situ PICL method there is no physical interference with the target detecting system. All these advantages of the PICL method indicate it has many potential applications in the analytical sciences. The proposed method was applied to analysis of urine containing adrenaline. The linear range for adrenaline is 2.0?×?10?10–1.0?×?10?7 g mL?1 and the detection limit is 6.0?×?10?11 g mL?1.
Figure
Schematic PICL Mechanism for the CL reagents-fluorescence dyes systems  相似文献   

20.
Indole-3-acetyl-myo-inositol (IAInos) is one of the most important auxin conjugates for storage and transportation of auxin. The information of its composition, distribution, and metabolism is particularly desired for elucidating the related signal transduction pathways of the plant hormones. However, separation and quantification of the four individual IAInos isomers in plant tissues have not been reported so far. In this work, we first synthesized and isolated four IAInos isomers using semi-preparative high-performance liquid chromatography (HPLC). The IAInos isomer structures were characterized using liquid chromatography-electrospray ionization quadrupole time-of-flight tandem mass spectrometry (LC-QTOF/MS) and nuclear magnetic resonance spectroscopy (NMR). Using these pure compounds as internal or external standards, an efficient LC-MS method was developed for simultaneous detection of indole-3-acetic acid, methyl indole-3-acetic acid ester, and the four IAInos isomers in plant tissue samples. The linear working range and lower limit of detection for the four IAInos isomers are 10–2,000 ng mL?1 and 5.0 ng mL?1, respectively. The stabilities and interconversion pathways of IAInos isomers were studied using our synthetic isomers. It was found that two IAInos isomers existed in Zea mays kernels, while all of the four IAInos isomers were present in the roots of Arabidopsis thaliana. The content of IAInos in A. thaliana roots was much lower than in the Z. mays kernels. The methodology in this article provides useful techniques and methods for systematic study on the phytophysiology and phytochemistry of IAA conjugates and other related plant hormones.
Figure
Separation of the four isomers of indole-3-acetyl-myo-inositol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号