首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we use the results from all-atom molecular dynamics (MD) simulations of proteins and peptides to assess the individual contribution of charged atomic groups to the enthalpic stability of the native state of globular proteins and investigate how the distribution of charged atomic groups in terms of solvent accessibility relates to protein enthalpic stability. The contributions of charged groups is calculated using a comparison of nonbonded interaction energy terms from equilibrium simulations of charged amino acid dipeptides in water (the "unfolded state") and charged amino acids in globular proteins (the "folded state"). Contrary to expectation, the analysis shows that many buried, charged atomic groups contribute favorably to protein enthalpic stability. The strongest enthalpic contributions favoring the folded state come from the carboxylate (COO(-)) groups of either Glu or Asp. The contributions from Arg guanidinium groups are generally somewhat stabilizing, while N(+)(3) groups from Lys contribute little toward stabilizing the folded state. The average enthalpic gain due to the transfer of a methyl group in an apolar amino acid from solution to the protein interior is described for comparison. Notably, charged groups that are less exposed to solvent contribute more favorably to protein native-state enthalpic stability than charged groups that are solvent exposed. While solvent reorganization/release has favorable contributions to folding for all charged atomic groups, the variation in folded state stability among proteins comes mainly from the change in the nonbonded interaction energy of charged groups between the unfolded and folded states. A key outcome is that the calculated enthalpic stabilization is found to be inversely proportional to the excess charge density on the surface, in support of an hypothesis proposed previously.  相似文献   

2.
Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal-isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute-solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute-solute term, the solute-solvent interactions, and the remainder that contains pressure-volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water-water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change.  相似文献   

3.
The structural and energetic properties of solutions containing water, urea, and trimethylamine-N-oxide (TMAO) are examined using molecular dynamics simulations. Such systems are of interest mainly because TMAO acts to counter the protein denaturing effect of urea. Even at relatively high concentration, TMAO is found to fit well into the urea-water structure. The underlying solution structure is influenced by TMAO, but these perturbations tend to be modest. The TMAO-water and TMAO-urea interaction energies make an important contribution to the total energy in solutions where counter-denaturing effects are expected. TMAO-water and TMAO-urea hydrogen bonds have the largest hydrogen-bond energies in the system. Additionally, TMAO cannot hydrogen bond with itself, and hence it interacts strongly with water and urea. These observations suggest that the mechanism of TMAO counter denaturation is simply that water and urea prefer to solvate TMAO rather than the protein, hence inhibiting its unfolding.  相似文献   

4.
Enthalpies of dilution of some aliphatic alcohols were determined at 25°C in aqueous 7M urea solutions by flow microcalorimetry. The excess enthalpies were expressed as power expansion series in molalities referred to 1 kg of constant composition urea-water mixture. This urea-water mixture was utilized throughout as a mixed solvent. The values of the second enthalpic virial coefficients were all found to be positive and generally lower than the corresponding values in water. Large differences were encountered, as in water, by comparing normal and branched isomeric propanols and butanols. For one system it was possible to measure the third coefficients, which were also positive. The second enthalpic coefficients were found to increase with the molecular weight of the alkanols. These facts suggest that in the presence of a large concentration of urea, the excess enthalpies are mainly determined by apolar interactions. This is surprising and potentially rich in consequences for a better understanding of the interactions among amino acid residues distantly situated in the primary sequences but topologically near in the loops of globular proteins. An analysis, carried out using the Savage-Wood additivity group method, shows that the enthalpic contributions (that appear to play a crucial role in water in making the polar interaction to be favorable) become essentially unfavorable in urea-water solvent. The hypothesis that the peptide-peptide interactions are prevented by the preferential solvation of urea is also discussed.  相似文献   

5.
The synthesis and spectroscopic characterization of self-assembling calix[4]arene based capsules 1a.1a and 1b.1b are described. These compounds feature four urea substituents at the upper rims and four secondary amide fragments at the lower rims that can participate in inter- and intramolecular hydrogen bonding in apolar solution. Communication between the calixarene rims in 1a, b influences the self-assembled cavity's size and shape. Specifically. dimerization results in a perfect cone conformation of the calixarene skeleton in 1a, b and stabilizes a seam of intramolecular amide C=O...H-N hydrogen bonds at the lower rim. This seam is cycloenantiomeric, with either clockwise or counterclockwise arrangements of the head-to-tail amides. Complexation of Na+-cation breaks hydrogen bonds at the lower rim but maintains the capsular assembly. Encapsulation properties of 1a.1a and 1b.1b were studied in nonpolar solvents and their binary mixtures as well as through heterodimerization experiments. The presence of amide groups at the lower rim causes notable differences in the capsule's binding affinities when compared to the corresponding tetraester capsules 1c.1c and 1d.1d. In the monomeric state calixarenes 1a, b are in a pinched cone conformation. The solid state X-ray crystallographic studies with monomeric 1a reveal only two intramolecular C=O...H-N hydrogen bonds between the adjacent amides at the lower rim, and an extensive network of intermolecular hydrogen bonds between urea groups at the upper rim.  相似文献   

6.
The molecular mechanism of urea-induced protein denaturation is not yet fully understood. Mainly two opposing mechanisms are controversially discussed, according to which either hydrophobic, or polar interactions are the dominant driving force. To resolve this question, we have investigated the interactions between urea and all 20 amino acids by comprehensive molecular dynamics simulations of 22 tripeptides. Calculation of atomic contact frequencies between the amino acids and solvent molecules revealed a clear profile of solvation preferences by either water or urea. Almost all amino acids showed preference for contacts with urea molecules, whereas charged and polar amino acids were found to have slight preferences for contact with water molecules. Particularly strong preference for contacts to urea were seen for aromatic and apolar side-chains, as well as for the protein backbone of all amino acids. Further, protein-urea hydrogen bonds were found to be significantly weaker than protein-water or water-water hydrogen bonds. Our results suggest that hydrophobic interactions are the dominant driving force, while hydrogen bonds between urea and the protein backbone contribute markedly to the overall energetics by avoiding unfavorable unsatisfied hydrogen bond sites on the backbone. In summary, we suggest a combined mechanism that unifies the two current and seemingly opposing views.  相似文献   

7.
The phase behavior and thermodynamic of micellization of three hybrid poly(acrylic acid)- block-poly( l-valine), namely PAA 40- b-PLVAL 100, PAA 80- b-PLVAL 100, and PAA 80- b-PLVAL 80, were investigated. beta-sheet formation in these polymeric systems resulted in a dominant enthalpic micellization process that exhibited an upper critical solution temperature (UCST). Micelle dissociation at higher temperatures is attributed to the disruption of favorable hydrogen bonds in the micellar core. Separation of hydrogen bond contributions to the micellization thermodynamics through the addition of urea as an external denaturing agent, revealed a shift from a dominant enthalpic contribution of PLVAL segments at low degree of deprotonation (alpha), where significant beta-sheet is formed, to a balanced enthalpy and entropy contributions at high alpha. At high alpha, an enhanced "water cage" hydration of unimers was observed due to the formation of water-PLVAL hydrogen bonds. Hydrophobic forces played an indirect role in enhancing the compactness of the hydrophobic core, which enhanced the strength of hydrogen bonds in the beta-sheet structures.  相似文献   

8.
To understand the mechanism of protein protection by the osmolyte trimethylamine-N-oxide (TMAO) at high pressure, using molecular dynamics (MD) simulations, solvation of hydrophobic group is probed in aqueous solutions of TMAO over a wide range of pressures relevant to protein denaturation. The hydrophobic solute considered in this study is neopentane which is a considerably large molecule. The concentrations of TMAO range from 0 to 4 M and for each TMAO concentration, simulations are performed at five different pressures ranging from 1 atm to 8000 atm. Potentials of mean force are calculated and the relative stability of solvent-separated state over the associated state of hydrophobic solute are estimated. Results suggest that high pressure reduces association of hydrophobic solutes. From computations of site-site radial distribution function followed by analysis of coordination number, it is found that water molecules are tightly packed around the nonpolar particle at high pressure and the hydration number increases with increasing pressure. On the other hand, neopentane interacts preferentially with TMAO over water and although hydration of neopentane reduces in presence of this osmolyte, TMAO does not show any tendency to prevent the pressure-induced dispersion of neopentane moieties. It is also observed that TMAO molecules prefer a side-on orientation near the neopentane surface, allowing its oxygen atom to form favorable hydrogen bonds with water while maintaining some hydrophobic contacts with neopentane. Analysis of hydrogen-bond properties and solvation characteristics of TMAO reveals that TMAO can form hydrogen bonds with water and it reduces the identical nearest neighbor water molecules caused by high hydrostatic pressures. Moreover, TMAO enhances life-time of water-water hydrogen bonds and makes these hydrogen bonds more attractive. Implication of these results for counteracting effect of TMAO against protein denaturation at high pressures are discussed.  相似文献   

9.
Enthalpies of dilution of N-acetyl amides of sarcosine and N-methyl-L-alanine dissolved in N,N-dimethylformamide have been measured calorimetrically at 25°C. The enthalpic pairwise interaction coefficients calculated there from are negative, indicating a energetically favorable interaction. The results were used to make a comparison with other peptides with regard to the methylation of amide groups. Substituting a primary amide hydrogen by a methyl group gives a smaller positive change of the pairwise interaction coefficient than substituting a secondary amide hydrogen.  相似文献   

10.
The vibrational spectrum of the Ala-Leu-Ala-Leu peptide in solution, computed from first-principles simulations, shows a prominent band in the amide I region that is assigned to stretching of carbonyl groups. Close inspection reveals combined but slightly different contributions by the three carbonyl groups of the peptide. The shift in their exact vibrational signature is in agreement with the different probabilities of these groups to form hydrogen bonds with the solvent. The central carbonyl group has a hydrogen bond probability intermediate to the other two groups due to interchanges between different hydrogen-bonded states. Analysis of the interaction energies of individual water molecules with that group shows that shifts in its frequency are directly related to the interactions with the water molecules in the first hydration shell. The interaction strength is well correlated with the hydrogen bond distance and hydrogen bond angle, though there is no perfect match, allowing geometrical criteria for hydrogen bonds to be used as long as the sampling is sufficient to consider averages. The hydrogen bond state of a carbonyl group can therefore serve as an indicator of the solvent’s effect on the vibrational frequency.  相似文献   

11.
Trimethylamine N-oxide (TMAO) and urea are osmolytes. Osmolytes allow cells to remain viable in harsh or extreme environments. Both TMAO and urea are found in shark and rays at approximate molar ratios of 1:2, respectively. At this ratio TMAO nearly completely counteracts the destabilizing effects that urea has on proteins. We ask whether RNA, which is denatured by urea, is stabilized by TMAO in a manner similar to that seen for proteins. We found that TMAO stabilizes Escherichia coli tRNAfmet tertiary structure and counteracts the denaturing effects of urea at the same ratios found for proteins. Cation binding usually drives RNA tertiary structure formation. These results suggest that tertiary structure stability is not only sensitive to cations but also to the aqueous composition and properties of the solvent. We propose that tertiary structure folding is driven by unfavorable interactions between TMAO and the phosphodiester backbone.  相似文献   

12.
Molecular dynamics simulations were carried out to study the influences of two naturally occurring osmolytes, urea, and trimethylamine-N-oxide (TMAO) on the hydrophobic interactions between neopentane molecules. In this study, we used two different models of neopentane: One is of single united site (UA) and another contains five-sites. We observe that, these two neopentane models behave differently in pure water as well as solutions containing osmolytes. Presence of urea molecules increases the stability of solvent-separated state for five-site model, whereas osmolytes have negligible effect in regard to clustering of UA model of neopentane. For both models, dehydration of neopentane and preferential solvation of it by urea and TMAO over water molecules are also observed. We also find the collapse of the second-shell of water by urea and water structure enhancement by TMAO. The orientational distributions of water molecules around different layers of neopentane were also calculated and we find that orientation of water molecules near to hydrophobic moiety is anisotropic and osmolytes have negligible effect on it. We also observe osmolyte-induced water-water hydrogen bond life time increase in the hydration shell of neopentane as well as in the subsequent water layers.  相似文献   

13.
The differential solubility of polar and apolar groups in water is important for the self-assembly of globular proteins, lipid membranes, nucleic acids, and other specific biological structures through hydrophobic and hydrophilic effects. The increase in water's heat capacity upon hydration of apolar compounds is one signature of the hydrophobic effect and differentiates it from the hydration of polar compounds, which cause a decrease in heat capacity. Water structuring around apolar and polar groups is an important factor in their differential solubility and heat capacity effects. Here, it is shown that joint radial/angular distribution functions of water obtained from simulations reveal quite different hydration structures around polar and apolar groups: polar and apolar groups have a deficit or excess, respectively, of "low angle hydrogen bonds". Low angle hydrogen bonds have a larger energy fluctuation than high angle bonds, and analysis of these differences provides a physical reason for the opposite changes in heat capacity and new insight into water structure around solutes and the hydrophobic effect.  相似文献   

14.
The nature in which the protecting osmolyte trimethylamine N-oxide (TMAO) and the denaturing osmolyte urea affect protein stability is investigated, simulating a decaalanine peptide model in multiple conformations of the denatured ensemble. Binary solutions of both osmolytes and mixed osmolyte solutions at physiologically relevant concentrations of 2:1 (urea:TMAO) are studied using standard molecular dynamics simulations and solvation free energy calculations. Component analysis reveals the differences in the importance of the van der Waals (vdW) and electrostatic interactions for protecting and denaturing osmolytes. We find that urea denaturation governed by transfer free energy differences is dominated by vdW attractions, whereas TMAO exerts its effect by causing unfavorable electrostatic interactions both in the binary solution and mixed osmolyte solution. Analysis of the results showed no evidence in the ternary solution of disruption of the correlations among the peptide and osmolytes, nor of significant changes in the strength of the water hydrogen bond network.  相似文献   

15.
In this study, 200 ps molecular dynamics simulations were conducted to investigate the effects of various alcohols on the structural stability of melittin. The averaged helicity of melittin remained 80% in pure butanol, whereas it was below 60% both in pure water and in pure methanol. The α‐helix propensity of melittin increased with the aliphatic chain length of the alcohol. Charge‐charge interaction between Lys21 and Arg24 and polar‐nonpolar interaction between Trp19 and Arg22 are probably responsible for the higher structural integrity of the C‐terminal α‐helix over the N‐terminal one. The weaker dielectric constant of longer aliphatic chain length of alcohol possibly reduces the hydrogen bonding between amide protons and surrounding solvent molecules and simultaneously promotes the intramolecular hydrogen bonding in melittin and therefore stabilizes the secondary structure of melittin. The effect of various alcohols on stabilizing melittin is most likely due to their ability to form clusters on the surface of melittin effectively, favoring the formation of intramolecular hydrogen bonds instead of intermolecular hydrogen bonds and promoting the formation of stable α‐helices.  相似文献   

16.
The interactions of trimannosides 1 and 2 with Con A were studied to reveal the effects of displacement of well-ordered water molecules on the thermodynamic parameters of protein-ligand complexation. Trisaccharide 2 is a derivative of 1, in which the hydroxyl at C-2 of the central mannose unit is replaced by a hydroxyethyl moiety. Upon binding, this moiety displaces a conserved water molecule present in the Con A binding site. Structural studies by NMR spectroscopy and MD simulations showed that the two compounds have very similar solution conformational properties. MD simulations of the complexes of Con A with 1 and 2 demonstrated that the hydroxyethyl side chain of 2 can establish the same hydrogen bonds in a low energy conformation with the protein binding site as those mediated by the water molecule in the complex of 1 with Con A. Isothermal titration microcalorimetry (ITC) measurements showed that 2 has a more favorable entropy of binding compared to 1. This term, which was expected, arises from the return of the highly ordered water molecule to bulk solution. The favorable entropy term was, however, offset by a relatively large unfavorable enthalpy term. This observation was rationalized by comparing the extent of hydrogen bond and solvation changes during binding. It is proposed that an indirect interaction through a water molecule will provide a larger number of hydrogen bonds in the complex that have higher occupancies than in bulk solution, thereby stabilizing the complex.  相似文献   

17.
Enthalpies of solution of amides of formic, acetic, and propionic acids with different degrees of N-substitution in aqueous solutions of ethylene glycol were measured at 298.15 K. The concentration of ethylene glycol did not exceed 4 mol kg–1. The reasons for increasing endothermic values of the enthalpies characterizing the amide transfer from water to a mixed aqueous-organic solvent on going from primary to tertiary amides and from formamides to the corresponding acetamides are discussed. The enthalpic coefficients of pair interactions between amides and ethylene glycol in water were calculated. The endothermicity of the interaction of the alkyl groups of the amide molecules with ethylene glycol results in positive values of the coefficients. The coefficient values increase with the enhancement of the hydrophobic properties of hydrophilic non-electrolytes (urea, formamide, ethylene glycol) due to an increase in the contribution of the hydrophobic component and a decrease in the contribution from the interaction of the polar groups of amides to the total interaction.  相似文献   

18.
Trimethylamine N-oxide (TMAO) is a compatible or protective osmolyte that stabilizes the protein native structure through non-bonding mechanism between TMAO and hydration surface of protein. However, we have shown here first time the direct binding mechanism for naturally occurring osmolyte TMAO with hydration structure of poly(N-isopropylacrylamide) (PNIPAM), an isomer of polyleucine, and subsequent aggregation of PNIPAM. The influence of TMAO on lower critical solution temperature (LCST) of PNIPAM was investigated as a function of TMAO concentration at different temperatures by fluorescence spectroscopy, viscosity (η), multi angle dynamic light scattering, zeta potential, and Fourier transform infrared (FTIR) spectroscopy measurements. To address some of the basis for further analysis of FTIR spectra of PNIPAM, we have also measured FTIR spectra for the monomer of N-isopropylacrylamide (NIPAM) in deuterium oxide (D(2)O) as a function of TMAO concentration. Our experimental results purportedly elucidate that the LCST values decrease with increasing TMAO concentration, which is mainly contributing to the direct hydrogen bonding of TMAO with the water molecules that are bound to the amide (-CONH) functional groups of the PNIPAM. We believed that the present work may act as a ladder to reach the heights of understanding of molecular mechanism between TMAO and macromolecule.  相似文献   

19.
Molecular dynamics simulations are used to obtain potentials of mean force for pairs of neopentane molecules immersed in aqueous solutions containing urea, trimethylamine-N-oxide (TMAO), or both solutes at once. It is shown that the hydrophobic attraction acting between neopentane pairs in pure water and in water-urea solution is completely destroyed by the addition of TMAO. This strongly suggests that TMAO does not counter the protein denaturing effect of urea by enhancing hydrophobic attraction amongst nonpolar groups.  相似文献   

20.
尿素是早已被人们认识的蛋白质变性剂,而氧化三甲胺则是最常用的蛋白质结构保护剂。虽然多年来被广泛应用在生物实验中,但是它们是如何在蛋白质结构形成中起作用,特别是氧化三甲胺是如何在高浓度尿素环境中起到抑制尿素蛋白变性作用的分子机制,至今仍然没有得到圆满解答。本文以单壁碳纳米管为模型疏水体系,采用分子动力学模拟研究尿素/氧化三甲胺混合溶液中纳米管内部水合性质,结果表明氧化三甲胺更易与水分子和尿素分子形成较强相互作用从而稳定了水溶液结构,这一结果亦表明了氧化三甲胺可以通过间接机制抵消尿素分子对于碳纳米管内部水合性质的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号