首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alloyed ZnxCd1-xSe quantum dots (QDs) have been successfully prepared at low temperatures by reacting a mixture of Cd(ClO4)2 and Zn(ClO4)2 with NaHSe using cysteine as a surface-stabilizing agent. The photoluminescence (PL) spectra of the alloyed QDs are determined on the basis of the Zn2+/Cd2+ molar ratio, reaction pH, intrinsic Zn2+and Cd2+ reactivities toward NaHSe, concentration of NaHSe, and the kind of thiols. A systematic blue shift in emission wavelength of the alloyed QDs was found with the increase in the Zn mole fraction. This result provides clear evidence of the formation of ZnxCd1-xSe QDs by the simultaneous reaction of Zn2+ and Cd2+ with NaHSe, rather than the formation of separate CdSe and ZnSe nanocrystals or core-shell structure CdSe/ZnSe nanocrystals. The size and inner structure of these QDs are also corroborated by using high-resolution transmission electron microscopy and X-ray powder diffraction. To further understand the formation mechanism, the growth kinetics of Zn0.99Cd0.01Se was studied by measuring the PL spectra at different growth intervals. The results demonstrated that, in the initial stage of growth, Zn0.99Cd0.01Se has a structure with a Cd-rich core and a Zn-rich shell. The post-preparative irradiation of these QDs improved their PL properties, resulting in stronger emission.  相似文献   

2.
High-quality Zn(x)Cd(1-x)Se nanocrystals have been successfully prepared at high temperature by incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe nanocrystals. With increasing Zn content, a composition-tunable emission across most of the visible spectrum has been demonstrated by a systematic blue-shift in emission wavelength. The photoluminescence (PL) properties for the obtained Zn(x)Cd(1-x)Se nanocrystals (PL efficiency of 70-85%, fwhm = 22-30 nm) are comparable to those for the best reported CdSe-based QDs. In particular, they also have good PL properties in the blue spectral range. Moreover, the alloy nanocrystals can retain their high luminescence (PL efficiency of over 40%) when dispersed in aqueous solutions and maintain a symmetric peak shape and spectral position under rigorous experimental conditions. A rapid alloying process was observed at a temperature higher than "alloying point". The mechanism of the high luminescence efficiency and stability of Zn(x)Cd(1-x)Se nanocrystals is explored.  相似文献   

3.
Zhang W  Zhou X  Zhong X 《Inorganic chemistry》2012,51(6):3579-3587
Unlike Mn doped quantum dots (d-dots), the emission color of Cu dopant in Cu d-dots is dependent on the nature, size, and composition of host nanocrystals (NCs). The tunable Cu dopant emission has been achieved via tuning the particle size of host NCs in previous reports. In this paper, for the first time we doped Cu impurity in Zn(x)Cd(1-x)S alloyed NCs and tuned the dopant emission in the whole visible spectrum via variation of the stoichiometric ratio of Zn/Cd precursors in the host Zn(x)Cd(1-x)S alloyed NCs. A facile noninjection and low cost approach for the synthesis of Cu:Zn(x)Cd(1-x)S d-dots was reported. The optical properties and structure of the obtained Cu:Zn(x)Cd(1-x)S d-dots have been characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The influences of various experimental variables, including Zn/Cd ratio, reaction temperature, and Cu dopant concentration, on the optical properties of Cu dopant emission have been systematically investigated. The as-prepared Cu:Zn(x)Cd(1-x)S d-dots did show PL emission but with quite low quantum yield (QY) (typically below 6%). With the deposition of ZnS shell around the Cu:Zn(x)Cd(1-x)S core NCs, the PL QY increased substantially with a maximum value of 65%. More importantly, the high PL QY can be preserved when the initial oil-soluble d-dots were transferred into aqueous media via ligand replacement by mercaptoundeconic acid. In addition, these d-dots have thermal stability up to 250 °C.  相似文献   

4.
Quantum dots with a core/shell/shell structure consisting of an alloyed core of InAs(x)P(1-x), an intermediate shell of InP, and an outer shell of ZnSe were developed. The InAs(x)P(1-x) alloyed core has a graded internal composition with increasing arsenic content from the center to the edge of the dots. This compositional gradient results from two apparent effects: (1) the faster reaction kinetics of the phosphorus precursor compared to the arsenic precursor, and (2) a post-growth arsenic-phosphorus exchange reaction that increases the arsenic content. The cores have a zinc blend structure for all compositions and show tunable emission in the near-infrared (NIR) region. A first shell of InP leads to a red-shift and an increase in quantum yield. The final shell of ZnSe serves to stabilize the dots for applications in aqueous environments, including NIR biomedical fluorescence imaging. These NIR-emitting core/shell/shell InAs(x)P(1-x)/InP/ZnSe were successfully used in a sentinel lymph node mapping experiment.  相似文献   

5.
6.
Li S  Zhao Z  Liu Q  Huang L  Wang G  Pan D  Zhang H  He X 《Inorganic chemistry》2011,50(23):11958-11964
Metastable zinc blende CuInSe(2) nanocrystals were synthesized by a hot-injection approach. It was found that the lattice mismatches between zinc blende CuInSe(2) and ZnSe as well as CuInSe(2) and CuInS(2) are only 2.0% and 4.6%, respectively. Thus, alloyed (ZnSe)(x)(CuInSe(2))(1-x) and CuInSe(x)S(2-x) nanocrystals with a zinc blende structure have been successfully synthesized over the entire composition range, and the band gaps of alloys can be tuned in the range from 2.82 to 0.96 eV and 1.43 to 0.98 eV, respectively. These alloyed (ZnSe)(x)(CuInSe(2))(1-x) and CuInSe(x)S(2-x) nanocrystals with a broad tunable band gap have a high potential for photovoltaic and photocatalytic applications.  相似文献   

7.
Zn(x)Cd(1-x)Se alloy nanowires, with composition x = 0, 0.2, 0.5, 0.7, and 1, have been successfully synthesized by a chemical vapor deposition (CVD) method assisted with laser ablation. The as-synthesized alloy nanowires, 60-150 nm in diameter and several tens of micrometers in length, complied with a typical vapor-liquid-solid (VLS) growth mechanism. The Zn(x)Cd(1-x)Se nanowires are single crystalline revealed from high-resolution transmission electron microscopic (HRTEM) images, selected area electron diffraction (SAED) patterns, and X-ray diffraction (XRD) measurement. Compositions of the alloy nanowires can be adjusted by varying the precursor ratios of the laser ablated target and the CVD deposition temperature. Crystalline structures of the Zn(x)Cd(1-x)Se nanowires are hexagonal wurtzite at x = 0, 0.2, and 0.5 with the [0 1 -1 0] growth direction and zinc blende at x = 0.7 and 1 with the [1 -1 1] growth direction. Energy gaps of the Zn(x)Cd(1-x)Se nanowires, determined from micro-photoluminescence (PL) measurements, change nonlinearly as a quadratic function of x with a bowing parameter of approximately 0.45 eV. Strong PL from the Zn(x)Cd(1-x)Se nanowires can be tuned from red (712 nm) to blue (463 nm) with x varying from 0 to 1 and has demonstrated that the alloy nanowires have potential applications in optical and sensory nanotechnology. Micro-Raman shifts of the longitudinal optical (LO) phonon mode observed in the Zn(x)Cd(1-x)Se nanowires show a one-mode behavior pattern following the prediction of a modified random element isodisplacement (MREI) model.  相似文献   

8.
High-quality alloyed Zn(x)Cd(1-x)S nanocrystals have been synthesized at high temperature by the reaction of a mixture of CdO- and ZnO-oleic acid complexes with sulfur in the noncoordinating solvent octadecene system. A series of monodisperse wurtzite Zn(x)Cd(1-x)S (x = 0.10, 0.25, 0.36, 0.53) nanocrystals were obtained with corresponding particle radii of 4.0, 3.2, 2.9, and 2.4 nm, respectively. With the increase of the Zn content, their photoluminescence (PL) spectra blue-shift systematically across the visible spectrum from 474 to 391 nm, indicating the formation of the alloyed nanocrystals. The alloy structure is also supported by the characteristic X-ray diffraction (XRD) patterns of these nanoalloys with different Zn mole fractions, in which their diffraction peaks systematically shift to larger angles as the Zn content increases. The lattice parameter c measured from XRD patterns decreases linearly with the increase of Zn content. This trend is consistent with Vegard's law, which further confirms the formation of homogeneous nanoalloys. These monodisperse wurtzite Zn(x)Cd(1-x)S nanoalloys possess superior optical properties with PL quantum yields of 25-50%, especially the extremely narrow room-temperature emission spectral width (full width at half-maximum, fwhm) of 14-18 nm. The obtained narrow spectral width stems from the uniform size and shape distribution, the high composition homogeneity, and the relatively large particle radius, which is close to or somewhat larger than the exciton Bohr radius. The process by which the initial structure with random spatial composition fluctuations turns into an alloy (solid solution) with homogeneous composition is clearly demonstrated by the temporal evolution of the PL spectra during the annealing progress.  相似文献   

9.
Electronic absorption spectroscopy has been used to study changes in Co2+ ligand-field parameters as a function of alloy composition in Co2+-doped Cd(1-x)Zn(x)Se nanocrystals. A shift in the energy of the 4T1(P) excited-state with alloy composition is observed. Analysis reveals that Co2+-Se2- bond lengths change relatively little as the host is varied continuously from CdSe to ZnSe, generating a large difference between microscopic and average cation-anion bond lengths in Co2+-doped CdSe nanocrystals but not in Co2+-doped ZnSe nanocrystals. The bimodal bond-length distributions observed here are shown to cause a diameter-dependent enthalpic destabilization of doped semiconductor nanocrystals.  相似文献   

10.
The ternary molecular nanoclusters [Zn(x)Cd(10-x)Se4(SePh)12(PnPr3)4] (x = 1.8, 1 a; x = 2.6, 1 b) were employed as single-source precursors for the synthesis of high-quality hexagonal Zn(x)Cd(1-x)Se nanocrystals. The tellurium clusters [Zn(x)Cd(10-x)Te4(TePh)12(PnPr3)4] (x = 1.8, 2 a; x = 2.6, 2 b) are equally convenient precursors for the synthesis cubic Zn(x)Cd(1-x)E nanoparticles. The thermolysis of the cluster molecules in hexadecylamine provides an efficient system in which the inherent metal-ion stoichiometry of the clusters is retained in the nanocrystalline products, whilst also affording control of particle size within the 2-5 nm range. In all cases, the nanoparticles are monodisperse, and luminescence spectra exhibit emission energies close to the absorption edge. Analysis of the optical spectra and X-ray diffraction patterns of these materials indicates a metal-ion concentration gradient within the structures of the nanocrystals, with Zn(II) ions predominantly located near the surface of the particles.  相似文献   

11.
Truly alloyed PbS(x)Se(1-x) (x = 0-1) nanocrystals (~5 nm in size) have been prepared, and their resulting optical properties are red-shifted systematically as the sulfur content of the materials increases. Their optical properties are discussed using a modified Vegard's approach and the bowing parameter for these nanoalloys is reported for the first time. The alloyed structure of the nanocrystals is supported by the energy-filtered transmission electron microscope images of the samples, which show a homogeneous distribution of sulfur and selenium within the nanocrystals. X-ray photoelectron spectroscopy studies on ligand-exchanged nanocrystals confirmed the expected stoichiometry and various oxidized species.  相似文献   

12.
The electronic band structure at the Zn(1-x)Mg(x)O/Cu(In(0.7)Ga(0.3))Se(2) interface was investigated for its potential application in Cd-free Cu(In,Ga)Se(2) thin film solar cells. Zn(1-x)Mg(x)O thin films with various Mg contents were grown by atomic layer deposition on Cu(In(0.7)Ga(0.3))Se(2) absorbers, which were deposited by the co-evaporation of Cu, In, Ga, and Se elemental sources. The electron emissions from the valence band and core levels were measured by a depth profile technique using X-ray and ultraviolet photoelectron spectroscopy. The valence band maximum positions are around 3.17 eV for both Zn(0.9)Mg(0.1)O and Zn(0.8)Mg(0.2)O films, while the valence band maximum value for CIGS is 0.48 eV. As a result, the valence band offset value between the bulk Zn(1-x)Mg(x)O (x = 0.1 and x = 0.2) region and the bulk CIGS region was 2.69 eV. The valence band offset value at the Zn(1-x)Mg(x)O/CIGS interface was found to be 2.55 eV after considering a small band bending in the interface region. The bandgap energy of Zn(1-x)Mg(x)O films increased from 3.25 to 3.76 eV as the Mg content increased from 0% to 25%. The combination of the valence band offset values and the bandgap energy of Zn(1-x)Mg(x)O films results in the flat (0 eV) and cliff (-0.23 eV) conduction band alignments at the Zn(0.8)Mg(0.2)O/Cu(In(0.7)Ga(0.3))Se(2) and Zn(0.9)Mg(0.1)O/Cu(In(0.7)Ga(0.3))Se(2) interfaces, respectively. The experimental results suggest that the bandgap energy of Zn(1-x)Mg(x)O films is the main factor that determines the conduction band offset at the Zn(1-x)Mg(x)O/Cu(In(0.7)Ga(0.3))Se(2) interface. Based on these results, we conclude that a Zn(1-x)Mg(x)O film with a relatively high bandgap energy is necessary to create a suitable conduction band offset at the Zn(1-x)Mg(x)O/CIGS interface to obtain a robust heterojunction. Also, ALD Zn(1-x)Mg(x)O films can be considered as a promising alternative buffer material to replace the toxic CdS for environmental safety.  相似文献   

13.
Mg(x)Zn(1-x)O ternary alloy nanocrystals with hexagonal wurtzite structures were fabricated by using the sol-gel method. X-ray diffraction patterns, UV-vis absorption spectra, and photoluminescence spectra were used to characterize the structural and optical properties of the nanocrystals. For as-prepared nanocrystals, the band gap increases with increasing Mg content. Weak excitonic emission with strong deep-level emission related to oxygen vacancy and interface defects is observed in the photoluminescence spectra at room temperature. Thermal annealing in oxygen was used to decrease the number of defects and to improve the quality of the nanocrystals. In terms of XRD results, the grain sizes of nanocrystals increase with increasing annealing temperature and the lattice constants of alloy are smaller than those of pure ZnO. The band gap becomes narrower with increasing annealing temperature. For Mg(x)Zn(1-x)O nanocrystals (x=0.03-0.15) annealed at temperatures ranging from 500 to 1000 degrees C, intense near-band-edge (NBE) emissions and weak deep-level (DL) emissions are observed. Consequently, the quality of Mg(x)Zn(1-x)O nanocrystals can be improved by thermal annealing.  相似文献   

14.
Kinetic analysis on the nanocrystal solid-solution formation was performed by heat treating CdSe/ZnSe core/shell nanocrystals, synthesized via a typical TOP/TOPO approach, at different temperatures for different time periods. X-ray diffraction (XRD) peak shifts in Cd1-xZnxSe cores according to the solid-solution treatments were monitored and used for the estimation of the lattice parameter change. The degree of solid-solution formation was determined considering the compositional variation in Cd1-xZnxSe cores, which was obtained from the Vegard's law. The degree of solid-solution formation (x) was applied to Jander analysis, and an Arrhenius-type plot was produced using the slopes of Jander plots. The activation energy for solid-solution formation was determined as approximately 152 kJ/mol, which evidently indicates that the diffusion of Zn2+ ions in the CdSe-ZnSe system is the governing mechanism for the Cd1-xZnxSe solid-solution formation. The Jander equation to predict the solid-solution formation kinetics for the CdSe/ZnSe core/shell systems was completed using the reaction rate constant (k).  相似文献   

15.
We report a new strategy based on mercury cation exchange in nonpolar solvents to prepare bright and compact alloyed quantum dots (QDs) (Hg(x)Cd(1-x)E, where E = Te, Se, or S) with equalized particle size and broadly tunable absorption and fluorescence emission in the near-infrared. The main rationale is that cubic CdE and HgE have nearly identical lattice constants but very different band gap energies and electron/hole masses. Thus, replacement of Cd(2+) by Hg(2+) in CdTe nanocrystals does not change the particle size, but it greatly alters the band gap energy. After capping with a multilayer shell and solubilization with a multidentate ligand, this class of cation-exchanged QDs are compact (6.5 nm nanocrystal size and 10 nm hydrodynamic diameter) and very bright (60-80% quantum yield), with narrow and symmetric fluorescence spectra tunable across the wavelength range from 700 to 1150 nm.  相似文献   

16.
A silanization technique of hydrophobic quantum dots (QDs) was applied to SiO(2)-coated CdSe/Cd(x)Zn(1-x)S QDs to precisely control the SiO(2) shell thickness and retain the original high photoluminescence (PL) properties of the QDs. Hydrophobic CdSe/Cd(x)Zn(1-x)S core-shell QDs with PL peak wavelengths of 600 and 652 nm were prepared by a facile organic route by using oleic acid (OA) as a capping agent. The QDs were silanized by using partially hydrolyzed tetraethyl orthosilicate by replacing surface OA. These silanized QDs were subsequently encapsulated in a SiO(2) shell by a reverse micelles synthesis. The silanization plays an important role for the QDs to be coated with a homogeneous SiO(2) shell and retain a high PL efficiency in water. Transmission electron microscopy observation shows that the shells are 1-9 nm with final particle sizes of 10-25 nm, depending on the initial QD size. In the case of short reaction time (6 h), the QDs were coated with a very thin SiO(2) layer because no visible SiO(2) shell was observed but transferred into the water phase. The silica coating does not change the PL peak wavelength of the QDs. The full width at half-maximum of PL was decreased 4 nm after coating for QDs emitting at both 600 and 652 nm. The PL efficiency of the SiO(2)-coated is up to 40%, mainly determined by the initial PL efficiency of the underlying CdSe/Cd(x)Zn(1-x)S QDs.  相似文献   

17.
Alloyed ternary CdS(1-x)Se(x) nanowires were synthesized by template-assisted electrodeposition, in which the ratio of S to Se in the nanowires was controlled by adjusting the relative amounts of the starting materials. Higher-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) showed that the alloyed ternary CdS(1-x)Se(x) nanowires are highly crystalline, and no phase-separated Cd was observed in these nanowires. Optical measurements indicated that the band-gap engineering can be realized in these CdS(1-x)Se(x) nanowires through modulating the composition of S and Se. With broadly tunable optical and electrical properties, these alloyed nanowires could be used in color-tuned nanolasers, biological labels, and nanoelectronics.  相似文献   

18.
Semimagnetic Pb(1-x)Mn(x)Se nanocrystals were synthesized by a fusion method in a glass matrix and characterized by optical absorption (OA), atomic/magnetic force microscopy (AFM/MFM), and photoluminescence techniques. MFM images strongly indicated the formation of Pb(1-x)Mn(x)Se magnetic phases in the glass system. Quantum dot size was manipulated by tuning annealing time. It was shown that Mn(2+) impurity affects nucleation, where Mn(2+)-doped samples present a redshift of the OA peak after a short annealing time and a blueshift after long annealing time compared to undoped PbSe NCs. This behavior was linked to the dependence of band-gap energy and the absorption selection rule on Mn(2+) concentration. Photoluminescence in the Pb(1-x)Mn(x)Se nanocrystals increases as the temperature rises up to a point and then decreases at higher temperatures. Anomalous increases in emission efficiency were analyzed by considering temperature induced carrier-transfer in semimagnetic Pb(1-x)Mn(x)Se quantum dots nanocrystals of different sizes.  相似文献   

19.
Described herein is a novel one‐pot aqueous synthesis of ZnSe nanocrystals has featuring the utilization of Na2SeO3 and Zn(AC)2×2H2O as Se and Zn source, glutathione (GSH) as stabilizing agent and reducing agent. By this approach, the UV‐blue ZnSe QDs with quantum yield (QYs) up to 19% have been synthesized with a molar ratio of Se/Zn/GSH at 1:4:8.5 under aqueous conditions at 110 °C. XRD and TEM show the ZnSe QDs are zinc cubic structure particles with an average diameter of 3–5 nm.  相似文献   

20.
A convenient chemical conversion method that allows the direct preparation of nanocrystalline ZnE (E = O, S, Se) semiconductor spheres and hollow spheres as well as their core/shell structures is reported. By using monodisperse ZnO nanospheres as a starting reactant and in situ template, ZnS, ZnSe solid and hollow nanospheres, and ZnO/ZnS and ZnO/ZnSe core/shell nanostructures have been obtained through an ultrasound-assisted solution-phase conversion process. The formation mechanism of these nanocrystals is connected with the sonochemical effect of ultrasound irradiation. The photoluminescence and electrogenerated chemiluminescence properties of the as-prepared nanocrystals were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号