首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Magnetic labeling of living cells creates opportunities for numerous biomedical applications. Here we describe an instantly cell magnetic labeling method based on ultrasound. We present a detailed study on the ultrasound performance of a simple and efficient labeling protocol for H-22 cells in vitro. High frequency focus ultrasound was investigated as an alternative method to achieve instant cell labeling with the magnetic particles without the need for adjunct agents or initiating cell cultures. Mean diameter of 168 nm dextran-T40 coated superparamagnetic iron oxide (SPIO) nanoparticles were prepared by means of classical coprecipitation in solution in our laboratory. H-22 tumor cells suspended in phosphate-buffered saline (PBS, pH=7.2) were exposed to ultrasound at 1.37 MHz for up to 120 s in the presence of SPIOs. The cellular uptake of iron oxide nanoparticles was detected by prussion blue staining. The viability of cells was determined by a trypan blue exclusion test. At 2 W power and 60 s ultrasound exposure in presence of 410 μg/ml SPIOs, H-22 cell labeling efficiency reached 69.4±6.3% and the labeled cells exhibited an iron content of 10.38±2.43 pg per cell. Furthermore, 95.2±3.2% cells remained viable. The results indicated that the ultrasound protocol could be potentially applied to label cells with large-sized magnetic particles. We also calculated the shear stress at the 2 W power and 1.37 MHz used in experiments. The results showed that the shear stress threshold for ultrasonically induced H-22 cell reparable sonoporation was 697 Pa. These findings provide a quantitative guidance in designing ultrasound protocols for cell labeling.  相似文献   

2.

Objective

The objective of this study was to investigate a method to generate positive contrast, selective to superparamagnetic iron oxide (SPIO) labeled cells, using the susceptibility-weighted echo-time encoding technique (SWEET).

Materials and Methods

SPIO-labeled human epidermal carcinoma (KB) cells were placed in a gel phantom. Positive contrast from the labeled cells was created by subtraction between conventional spin-echo images and echo-time shifted susceptibility-weighted images. SPIO-labeled cells were injected into the left dorsal flank and hind limb of nude mice, and unlabeled cells were placed on the right side as controls. Tumor growth was monitored using the proposed method, and a histological analysis was used to confirm the presence of the labeled cells.

Results

Based on in vitro testing, we could detect 5000 labeled cells at minimum and the number of pixels with positive contrast increased proportionally to the number of labeled cells. Animal experiments also revealed the presence of tumor growth from SPIO-loaded cells.

Conclusions

We demonstrated that the proposed method, based on the simple principle of echo-time shift, could be readily implemented in a clinical scanner to visualize the magnetic susceptibility effects of SPIO-loaded cells through a positive-contrast mechanism.  相似文献   

3.
Delineation of the gastrointestinal tract in magnetic resonance imaging (MRI) remains a problem. Ferric ammonium citrate is paramagnetic, producing a high MRI signal intensity by virtue of its spin-lattice (T1) relaxation rate enhancement properties. Water is diamagnetic, producing a low MRI signal intensity, especially with short TR and TE times. To compare efficacy for gastrointestinal contrast alteration, ferric ammonium citrate was administered to 18 patients and water was given to 10 patients. Spin-echo imaging at 0.35T was performed after administration of these agents. Ferric ammonium citrate produced high signal intensity within the esophagus, stomach, duodenum, and small intestine that aided in the differentiation of the gastrointestinal tract from adjacent tumors, vessels, and viscera. Delineation of the gut wall was superior using ferric ammonium citrate compared to that produced by water. Delineation of the margins of the pancreas, liver, and kidney from adjacent gastrointestinal tract was also better with ferric ammonium citrate. Optimal distinction between bowel and fat was better with water. Longer TE times (75 to 200 ms) may allow improved contrast between gut and intrabdominal fat using ferric ammonium citrate.  相似文献   

4.
ABSTRACT

This contribution describes the use of Fast Field-cycling relaxometry (FFC-NMR) for the characterisation of Gd(III)- and Mn(II)-based contrast agents for MRI. Through a series of selected examples, we analyse the role of different structural and dynamic parameters on 1H relaxivity and on the shape of the 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles. The amplitude and shape of the profiles is affected by the number of water molecules coordinated to the metal ion, the water exchange rate, the rotational correlation time of the complex and the relaxation of the electron spin. As a result, 1H NMRD profiles represent a powerful tool for the understanding of the properties of MRI contrast agent candidates at the molecular level.  相似文献   

5.
Ferromagnetic iron oxide nanoparticles of about 33 nm in diameter were synthesized by high-temperature decomposition of an iron-oleate complex, using octadecene as the solvent. These particles were subsequently coated with polyN-isopropylacrylamide (pNIPAAm) by a surfactant exchange method. Temperature-sensitive behavior of these particles was studied using ac susceptibility and dynamic light scattering (DLS) measurements. Shifts in the imaginary part of the ac susceptibility are correlated with swelling and collapse of pNIPAAm as a function of temperature.  相似文献   

6.

Purpose

To examine mesenchymal stem cell (MSC) labeling with micrometer-sized iron oxide particles (MPIOs) for magnetic resonance imaging (MRI)-based tracking and its application to monitoring articular cartilage regeneration.

Methods

Rabbit MSCs were labeled using commercial MPIOs. In vitro MRI was performed with gradient echo (GRE) and spin echo (SE) sequences at 3T and quantitatively characterized using line profile and region of interest analysis. Ex vivo MRI of hydrogel-encapsulated labeled MSCs implanted within a bovine knee was performed with spoiled GRE (SPGR) and T sequences. Fluorescence microscopy, labeling efficiency, and chondrogenesis of MPIO-labeled cells were also examined.

Results

MPIO labeling results in efficient contrast uptake and signal loss that can be visualized and quantitatively characterized via MRI. SPGR imaging of implanted cells results in ex vivo detection within native tissue, and T imaging is unaffected by the presence of labeled cells immediately following implantation. MPIO labeling does not affect quantitative glycosaminoglycan production during chondrogenesis, but iron aggregation hinders extracellular matrix visualization. This aggregation may result from excess unincorporated particles following labeling and is an issue that necessitates further investigation.

Conclusion

This study demonstrates the promise of MPIO labeling for monitoring cartilage regeneration and highlights its potential in the development of cell-based tissue engineering strategies.  相似文献   

7.
A challenge for future applications in nanotechnology is the functional integration of nano-sized materials into cellular structures. Here we investigated superparamagnetic Fe3O4 iron oxide nanoparticles coated with a lipid bilayer for uptake into cells and for targeting subcellular compartments. It was found that magnetic nanoparticles (MNPs) are effectively taken up into cells and make cells acquire magnetic activity. Biotin-conjugated MNPs were further functionalized by binding of the fluorescent tag streptavidin–fluorescein isothiocyanate (FITC) and, following uptake into cells, shown to confer magnetic activity and fluorescence labeling. Such FITC-MNPs were localized in the lysosomal compartment of cells which suggests a receptor-mediated uptake mechanism.  相似文献   

8.
为方便计算托卡马克磁场分布,建立了一些二维解析铁芯模型。由于前提假设的不同而给磁场分布的计算带来了不同的边界条件,因而得到的磁场分布计算结果与实际情况有所偏差。为了获得铁芯托卡马克的极向磁场三维分布,建立了带铁芯的极向磁场线圈三维数值模型,计算铁芯托卡马克的三维磁场,与不同铁芯模型的磁场计算结果进行比较,并且研究铁芯托卡马克的三维磁场的极向分量在环向上的不对称性。  相似文献   

9.
Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s?1 mM?1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s?1 mM?1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T 2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.  相似文献   

10.
For efficient labeling and tracking via magnetic resonance (MR) imaging of human mesenchymal stem cells (h-MSCs), magnetic labeling agents must be responsive to an external magnetic field. Thus, we developed ultrasensitive magnetoplex as a magnetic labeling agent composed of PEGylated MnFe2O4 nanocrystals (PMNCs) and polycationics (poly-l-lysine, PLL) for efficient labeling of the h-MSCs and monitoring of the transplanted h-MSCs for a long term. PMNCs were prepared by nanoemulsion methods composed of MnFe2O4 nanocrystals (MNCs) and amphiphilic polymers (mPEG–dodecanoic acid). The prepared PMNCs exhibited excellent biocompatibility and their polycationic complexes (PMNCs/PLL) demonstrated remarkable sensitivity compared with magnetic iron oxide nanoparticles (MION)/PLL or Ferumoxides/PLL. Furthermore, PMNCs demonstrated the potentials for novel diagnostic and therapeutic strategies with potential applications in various biomedical fields.  相似文献   

11.
We describe a method for automated measurement of the integrated sensitivity of solar cells (SCs) and multielement photoconverters (MPCs) using an experimental apparatus including a Pentium III personal computer (PC), an HP-34401A digital multimeter (DM), a stabilized radiation source (SRS), a controllable focusing system, an X-Y positioning device based on CD-RW optical disk storage devices. The method provides high accuracy in measuring the size of photosensitive areas of the solar cells and multielement photoconverters and inhomogeneities in their active regions, which makes it possible to correct the production process in the development stage and during fabrication of test prototypes for the solar cells and multielement photoconverters. The radiation power from the stabilized radiation source was ≤1 W; the ranges of the scanning steps along the X, Y coordinates were 10–100 μm, the range of the transverse cross sectional diameters of the focused radiation beam was 10–100 μm, the measurable photocurrents were 10−9 A to 2 A; scanning rate along the X, Y coordinates, ≤100 mm/sec; relative mean-square error (RMSE) for measurement of the integrated sensitivity of the solar cells, 0.2 ≤ γS int ≤ 0.9% in the ranges of measurable photocurrents 1 mA ≤ Iph ≤ 750 mA and areas 0.1 ≤ A ≤ 25 cm2 for number of measurements equal to ≤ 2· 105; instability of the radiation power (luminosity) ≤ 0.08% for 1 h or ≤ 0.4% for 8 h continuous operation; stabilized power range for the stabilized radiation source, 10−2–102 W. The software was written in Delphi 7.0. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 5, pp. 670–675, September–October, 2006.  相似文献   

12.
The universal magneto-optic (MO) coupled-mode equations for magnetostatic waves (MSWs) and guided optical waves (GOWs) under arbitrarily tilted bias magnetic fields are presented for the first time and, as an example, applied to the noncollinear Stokes interaction between the incident TE0-mode light and magnetostatic backward volume wave (MSBVW) excited by single-element microstrip line transducer in yttrium–iron–garnet (YIG) film. Our calculation indicates that, for the case of magnetization parallel to the MSBVW propagation direction, the diffraction efficiency (DE) is equal to the mode-conversion efficiency of the diffracted lights (MCDE) and the calculated curve of relative DE for the MSBVW-based MO Bragg cell in pure YIG waveguide is in good agreement with the experimental data. In contrast, the diffraction performance can be greatly improved by optimizing the bias magnetic field and the DE gain can be increased by 6.3 dB in the tangentially magnetized film. The angular dependences of the DE and the corresponding Bragg angle upon the magnetization direction are also discussed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号