首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On-line monitoring of Stille reactions was performed via direct infusion electrospray ionization mass spectrometry (ESI-MS) and its tandem version (ESI-MS/MS). When operated in the positive ion mode, ESI(+)-MS was able to transfer, directly from solution to the gas phase, the species involved in all main steps of a Stille reaction, that is, the catalytically active palladium species Pd(PPh3)2, in its molecular ion form as well as the key cationic Pd(II) intermediates, including cyclic IPd-(CH2CH)Sn species. When searching for anionic species, ESI(-)-MS monitoring showed I- as the only anion detectable in the reaction medium. A detailed catalytic cycle for a Stille reaction was elaborated in which reaction intermediates and the previously elusive catalytically active Pd(0) species are shown in association with the respective ionic species intercepted by ESI-MS and further characterized by ESI-MS/MS.  相似文献   

2.
The application of electrospray ionisation mass spectrometry (ESI-MS) as a direct method for detecting reactive intermediates is a technique of developing importance in the routine monitoring of solution-phase reaction pathways. Here, we utilise a novel on-line photolysis ESI-MS approach to detect the photoproducts of riboflavin in aqueous solution under mildly alkaline conditions. Riboflavin is a constituent of many food products, so its breakdown processes are of wide interest. Our on-line photolysis setup allows for solution-phase photolysis to occur within a syringe using UVA LEDs, immediately prior to being introduced into the mass spectrometer via ESI. Gas-phase photofragmentation studies via laser-interfaced mass spectrometry of deprotonated riboflavin, [RF − H], the dominant solution-phase species under the conditions of our study, are presented alongside the solution-phase photolysis. The results obtained illustrate the extent to which gas-phase photolysis methods can inform our understanding of the corresponding solution-phase photochemistry. We determine that the solution-phase photofragmentation observed for [RF − H] closely mirrors the gas-phase photochemistry, with the dominant m/z 241 condensed-phase photoproduct also being observed in gas-phase photodissociation. Further gas-phase photoproducts are observed at m/z 255, 212, and 145. The value of exploring both the gas- and solution-phase photochemistry to characterise photochemical reactions is discussed.  相似文献   

3.
The gas-phase fragmentation reactions of 2-hydroxybenzyl-N-pyrimidinylamine derivatives (Compounds 1 to 6), the O-N-type acid-catalyzed Smiles rearrangement products of 2-pyrimidinyloxy-N-arylbenzylamine derivatives, have been examined via positive ion matrix-assisted laser desorption/ionization (MALDI) infrared multiphoton dissociation (IRMPD) mass spectrometry in FT-ICR MS and via negative ion electrospray ionization (ESI) in-source collision-induced dissociation (CID) mass spectrometry, respectively. The major fragmentation pathway of protonated 1 to 6 gives the F ions under IRMPD; theoretical results show that the retro-Michael reaction channel is more favorable in both thermodynamics and kinetics. This explanation is supported by H/D exchange experiments and the MS/MS experiment of acetylated 1. Deprotonated 1 to 6 give rise to the solitary E ions (aromatic nitrogen anions) in the negative ion in-source CID; theoretical calculations show that a retro-Michael mechanism is more reasonable than a gas-phase intramolecular nucleophilic displacement (SN2) mechanism to explain this reaction process.  相似文献   

4.
Using electrospray ionization (tandem) mass spectrometry (ESI-MS(/MS)) spectrometric experiments, the Sandmeyer reaction was monitored on-line, and key intermediates were intercepted and characterized for the first time. The mechanistic information provided by on-line ESI-MS(/MS) is in accordance with Sandmeyer's proposal, and was made possible by coupling a microreactor on-line to the ESI ion source, which allowed reactions to be screened from 0.7-2.0 s, identifying and characterizing all intermediates that were formed and consumed during the reaction.  相似文献   

5.
The potential of electrospray ionization (ESI) mass spectrometry (MS) to detect non-covalent protein complexes has been demonstrated repeatedly. However, questions about correlation of the solution and gas-phase structures of these complexes still produce vigorous scientific discussion. Here, we demonstrate the evaluation of the gas-phase binding of non-covalent protein complexes formed between bovine pancreatic trypsin inhibitor (BPTI) and its target enzymes over a wide range of dissociation constants. Non-covalent protein complexes were detected by ESI-MS. The abundance of the complex ions in the mass spectra is less than expected from the values of the dissociation constants of the complexes in solution. Collisionally activated dissociation (CAD) tandem mass spectrometry (MS/MS) and a collision model for ion activation were used to evaluate the binding of non-covalent complexes in the gas phase. The internal energy required to induce dissociation was calculated for three collision gases (Ne, Ar, Kr) over a wide range of collision gas pressures and energies using an electrospray ionization source. The order of binding energies of the gas-phase ions for non-covalent protein complexes formed by the ESI source and assessed using CAD-MS/MS appears to differ from that of the solution complexes. The implication is that solution structure of these complexes was not preserved in the gas phase.  相似文献   

6.
Tandem mass spectrometry is used to predict the chemical transformations of 2-pyrimidinyloxy-N-arylbenzyl amine derivatives. Compound 1, N-2-2-4,6- dimethoxypyrimidin-2-yloxy benzylamino phenyl benzamide was selected as a model to present our idea. The CID reactions of protonated 1 include an intramolecular S(N)2 reaction and a cyclodehydration reaction. Under in-source CID conditions, deprotonated 1 undergoes a Smiles rearrangement reaction and then dissociates to the ion at m/z 349. Theoretical computations were invoked to shed light on the reaction mechanisms of 1 by the semiempirical PM3 method. These studies of gas-phase reactions show the reactivity of some potential reaction centers in this molecule, which inspired us to explore the solution phase analogous reactions of 1. Further experiments show that 1 has two analogous reactions in acidic solution: the acid-catalyzed cyclodehydration reaction and the acid-catalyzed Smiles rearrangement reaction. Moreover, 1 undergoes the base-catalyzed Smiles rearrangement under basic conditions. The present study demonstrates that mass spectrometry can play an important role in predicting the chemical solution phase transformations of 2-pyrimidinyloxy-N-arylbenzyl amine derivatives.  相似文献   

7.
Electrospray and Electrosonic Spray Ionization Mass Spectrometry (ESI-MS and ESSI-MS) have been widely used to report evidence that many chemical reactions in micro- and nano-droplets are dramatically accelerated by factors of ∼102 to 106 relative to macroscale bulk solutions. Despite electrospray''s relative simplicity to both generate and detect reaction products in charged droplets using mass spectrometry, substantial complexity exists in how the electrospray process itself impacts the interpretation of the mechanism of these observed accelerated rates. ESI and ESSI are both coupled multi-phase processes, in which analytes in small charged droplets are transferred and detected as gas-phase ions with a mass spectrometer. As such, quantitative examination is needed to evaluate the impact of multiple experimental factors on the magnitude and mechanisms of reaction acceleration. These include: (1) evaporative concentration of reactants as a function of droplet size and initial concentration, (2) competition from gas-phase chemistry and reactions on experimental surfaces, (3) differences in ionization efficiency and ion transmission and (4) droplet charge. We examine (1–4) using numerical models, new ESI/ESSI-MS experimental data, and prior literature to assess the limitations of these approaches and the experimental best practices required to robustly interpret acceleration factors in micro- and nano-droplets produced by ESI and ESSI.

The application of Electrospray and Electrosonic Spray Ionization Mass Spectrometry (ESI-MS and ESSI-MS) to study accelerated reaction kinetics in droplets is examined using numerical models, new experimental data, and prior literature.  相似文献   

8.
Numerous studies have demonstrated that humic substances (HS) react with iodine to form iodo derivatives and thereby can control the bioavailability of radioisotopes. Unfortunately, none of these studies have provided detailed insights into product compounds and so far, to our knowledge, the direct analysis of these species by electrospray ionization (ESI) mass spectrometry has not been explored. The reactivity of iodine with fulvic acids (FA) present in HS was investigated by means of ESI coupled with a quadrupole time-of-flight (Q-TOF) mass spectrometer. ESI spectra of solutions, that were indicated by MS/MS analysis to have formed iodinated species, apparently displayed singly charged ions corresponding in m/z to hypothesized species, viz., [RI - H](-), R = (substituted FA compound). MS/MS analysis based on the diagnostic fragment ions for FA compounds and their iodo derivatives suggests that FA undergo aromatic substitutions. Furthermore, significant differences in mass profiles are observed that presumably result from extended redox reactions. The ESI-MS technique opens up new opportunities to understand the scavenging properties of HS towards radionuclides and heavy metals for environmental studies.  相似文献   

9.
An electrospray ionization (ESI) source was used to generate gas-phase molecular anions of the amino acids leucine and isoleucine ((M–H); m/z −130), which were separated by high- field asymmetric waveform ion mobility spectrometry (FAIMS) and detected by quadrupole mass spectrometry (MS). This combination of ESI-FAIMS-MS enabled selective determination of either amino acid in mixtures that contained at least a 625-fold excess of the other. Comparisons with conventional ESI-MS showed a 50-fold improvement in the signal to background ratio for a 1 μM solution of leucine.  相似文献   

10.
A systematic study of the fragmentation pattern of N-diisopropyloxyphosphoryl (DIPP) dipeptide methyl esters in an electrospray ionization (ESI) tandem mass spectrometry (MS/MS) was presented. A combination of accurate mass measurement and tandem mass spectrometry had been used to characterize the major fragment ions observed in the ESI mass spectrum. It was found that the alkali metal ions acted as a fixed charge site and expelled the DIPP group after transferring a proton to the amide nitrogen. For all the N-phosphoryl dipeptide methyl esters, under the activation of a metal ion, the rearrangement product ion at m/z 163 was observed and confirmed to be the sodium adduct of phosphoric acid mono-isopropyl esters (PAIE), via a specific five-membered penta-co-ordinated phosphorus intermediate. However, no rearrangement ion was observed when a beta-amino acid was at the N-terminal. This could be used to develop a novel method for differentiating isomeric compounds when either alpha- or beta-amino acid are at the N-terminus of peptides. From the [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters (DIPP Xaa1 Xaa2 OMe), the peaks corresponding to the [M+Na Xaa1 C3H6]+ were observed and explained. The [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters with Phe located in the C-terminal, such as DIPPValPheOMe, DIPPLeuPheOMe, DIPPIlePheOMe, DIPPAlaPheOMe and DIPPPhePheOMe, had characteristic fragmentation. Two unusual gas-phase intramolecular rearrangement mechanisms were first proposed for this fragmentation. These rearrangements were not observed in dipeptide methyl ester analogs which did not contain the DIPP at the N-terminal, suggesting that this moiety was critical for the rearrangement.  相似文献   

11.
A temperature controlled (37 °C) metabolic reaction chamber with a volume of 1 mL was coupled directly to electrospray ionization mass spectrometry (ESI-MS) by the use of a 50 μm deep counter flow micro-chip electromembrane extraction (EME) system. The EME/ESI-MS system was used to study the in vitro metabolism of amitriptyline in real time. There was no need to stop the metabolisms by protein precipitation as in conventional metabolic studies, since the EME selectively extracted the drug and metabolites from the reaction solution comprised of rat liver microsomes in buffer. Compositional changes in the reaction chamber were continuously detected 9 seconds later in the MS. Most of this time delay was due to transport of the purified extract towards the ESI source. The EME step effectively removed the enzymatic material, buffer and salts from the reaction mixture, and prevented these species from being introduced into the ESI-MS system. The on-chip EME/ESI-MS system provided repeatability for the amitriptyline signal intensity within 3.1% relative standard deviation (RSD) (n = 6), gave a linear response for amitriptyline in the tested concentration range of 0.25 to 15 μM, and was found not to be prone to ion-suppression from major metabolites introduced simultaneously into the EME/ESI-MS system. The setup allowed the study of fast reactions kinetics. The half-life, t(1/2), for the metabolism of 10 μM amitriptyline was 1.4 minutes with a 12.6% RSD (n = 6).  相似文献   

12.
For the first time, we observed a stable and intense ion (m/z 376) of the oxygenated water cluster ion ((H(2)O)(20)O(+)) produced from simply spraying an aqueous solution of iron nanoparticles (Fe NPs) into an electrospray mass spectrometry (ESI-MS) system. Tandem mass spectrometric (MS/MS and MS/MS/MS) results were applied to identify the assignments of the fragment ions of m/z 376 in order to explore the possible structures of this cluster ion. The possible structures of the (H(2)O)(20)O(+) ions are proposed as pentagonal dodecahedron water clathrate cages from the results of tandem mass spectrometry since eliminations of five water molecules were frequently observed in the MS/MS results for many subsequent fragment ions of m/z 376. The formation of this oxygenated water cluster ion ((H(2)O)(20)O(+)) in ESI-MS is attributed to the high surface reactivity and surface energy of Fe NPs during ESI processes (under high temperature and high voltage (5 kV) of ESI spray environment). We believe that the observation of self-assembly formation of oxygenated water clusters is an important issue in nanoscience as well as in the fields of water clusters.  相似文献   

13.
Electrospray ionization mass spectrometry (ESI-MS) is increasingly used in the study of metal-ligand equilibria in aqueous solutions. However, the correlation between conditions in solution and mass spectra in the gas phase is far from being completely established. In the present work the equation i = kC(0)f was used to correlate relative ion intensity (i) in an ESI mass spectrum, the stoichiometric concentration (C(0)) in solution of the complex which produced this ion, and the fraction (f) of complex having the same protonation state as that of the ion detected in the spectrum. This equation takes into account that metal-ligand complexes have acid-base properties, and that these properties affect the efficiency by which the ions are brought from the solution to the gas phase. The equation was experimentally checked by electrospraying solutions containing aluminium(III) and any of the four ligands 3,4-dihydroxybenzoic acid, 3-hydroxy-2-(1H)pyridinone, citric acid, and ethylenediaminetetramethylenephosphonic acid at different pH values. ESI-MS experimental i values and C(0)f values calculated from literature data were plotted versus the solution pH. Values are correlated in the majority of cases, thus confirming the validity of the approach proposed. Correlation is lost, as expected, for low f or C(0) values, and when extensive gas-phase reactions occur. The equation i = kC(0)f can be used to estimate quantitative data for unknown metal-ligand solutions analyzed by ESI-MS.  相似文献   

14.
A fast procedure to classify perfumes and identify counterfeit samples is described. Dilution of a few microL of the sample in a 1:1 methanol/water solution is followed by detection of its major polar components via direct infusion electrospray ionization mass spectrometry (ESI-MS) in the positive ion mode. As proof-of-principle cases, three famous brands of perfumes were used. The ESI+-MS fingerprints of authentic samples were very characteristic, showing distinctive sets of polar markers for each sample. Principal component analysis (PCA) placed samples of the three perfume brands in well-defined groups. Counterfeit samples were also clearly detected owing to contrasting ESI-MS fingerprints, with PCA placing these samples far away from the authentic samples.  相似文献   

15.
The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10–1 Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.
Figure  相似文献   

16.
The relationship between gas-phase protein structure and ion/molecule reactivity is explored in comparisons between native and disulfide-reduced aprotinin, lysozyme, and albumin. Reactions are performed in the atmospheric-pressure inlet to a quadrupole mass spectrometer employing a novel capillary interface-reactor. In reactions with equal concentrations of diethylamine, multiply protonated molecules generated by electrospray ionization (ESI) of 'native' proteins shifted to lower charge states than did multiply protonated molecules from ESI of the disulfide-reduced counterparts, suggesting that the disulfide-reduced protein ions are less reactive than native protein ions of the same charge state. Differences in reactivity may arise from protonation of different amino acid residues and/or differences in the proximities of charge sites in the two molecules. These results suggest that the reactivity of multiply charged proteins can be significantly affected by their gas-phase structure.  相似文献   

17.
On-line analysis of compounds from solution has been greatly facilitated by the advent of electrospray ionization mass spectrometry (ESI-MS). Although quadrupole mass analyzers are most commonly used with ESI at present, time-of-flight (TOF) mass spectrometers offer several potential advantages including high data acquisition rates, which are desirable for fast separation techniques. One method of coupling ESI and TOF uses an ion trap for temporary storage and accumulation of the electrosprayed ions prior to TOF mass analysis. Previous studies have not fully addressed the effects of several key variables on the analytical capabilities of this type of instrument. In this study, the characterization of an ion trap/linear TOF instrument for ESI is described. The behavior of various analytes is divided into two separate groups; each one is found to have its own optimal set of operating conditions. The reasons for the observed differences between groups are explored. Issues relevant to mass resolution, sensitivity, mass range, mass-to-charge ratio discrimination, and mass measurement accuracy are addressed. Finally, it is suggested that the analytical capability of this type of instrument could be significantly improved by changing the ion optics from the existing focusing lenses to a rf-only quadrupole lens.  相似文献   

18.
Electrospray ionization mass spectrometry is a critically important technique for the determination of small molecules, but its application for this purpose is complicated by its selectivity. For positive ion ESI-MS analysis of basic analytes, several investigators have pointed to the importance of analyte basicity as a source of selectivity. Currently, however, it is not known whether basicity in the gas phase or in solution is ultimately most important in determining responsiveness. The objective of these studies was to investigate the relative importance of basicity in solution and in the gas phase as factors that predict selectivity in positive ion ESI-MS analysis. ESI-MS response was compared for a diverse series of protonatable analytes in two different solvents, neat methanol and methanol with 0.5% acetic acid. A correlation was observed between analyte pK(b) and electrospray response. However, the response for the analytes with very high pK(b) values was significantly higher than would be expected based on concentration of the protonated form or the analyte in solution, and this higher response did not appear to result from gas-phase proton transfer reactions. Although all of the analytes investigated had higher gas-phase basicities than the solvent, their relative responses were not dictated by gas-phase basicity. Higher response was observed for all of the analytes studied in acidified methanol compared with neat methanol, and this higher response was most pronounced for weakly basic analytes. These findings support the use of analyte pK(b) for rational method development in ESI-MS analysis of small molecules.  相似文献   

19.
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding of 13 alkaloids to two GC-rich DNA duplexes which are critical sequences in human survivin promoter. Negative ion ESI-MS was first applied to screen the binding of the alkaloids to the duplexes. Six alkaloids (including berberine, jatrorrhizine, palmatine, reserpine, berbamine, and tetrandrine) show complexation with the target DNA sequences. Relative binding affinities were estimated from the negative ion ESI data, and the alkaloids show a binding preference to the duplex with higher GC content. Positive ion ESI mass spectra of the complexes were also recorded and compared with those obtained in negative ion mode. Only the 1 : 1 complex with berbamine was observed with lower abundance in the positive ion mass spectrum while complexes with the other alkaloids were absolutely absent. Collision-induced dissociation (CID) experiments indicate that the complexes with the protoberberine alkaloids (berberine, jatrorrhizine, and palmatine) dissociate via base loss and covalent cleavage. In contrast, product ion spectra of the complexes with the alkaloids reserpine, berbamine, and tetrandrine show the predominant loss of a neutral alkaloid molecule, accompanied by base loss and covalent cleavage to a lesser extent. A comparison of the gas-phase behaviors of complexes with the alkaloids to those with the traditional DNA binders has suggested an intercalative binding mode of these alkaloids to the target DNA duplexes.  相似文献   

20.
Electrospray ionization tandem mass spectrometry of a phosphonium ylid complex of gold produces an ion whose mass and gas-phase chemical reactivity indicate that it is a gold benzylidene complex. The complex, with a supporting NHC ligand, corresponds to a type of reactive intermediates which have been presumed to act in gold-catalyzed cyclopropanation reactions, but which have not been observed to date in solution or gas-phase experiments. A threshold CID experiment also yields thermochemical information on the formation of the gold carbene from the ylid complex precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号