首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
We have studied theoretically the far- and near-field scattering response of bimetallic Ag/Au core-shell and alloy nanoparticles. Particular emphasis is put on the near-field study, which is known to play a fundamental role in surface enhanced spectroscopies. The comparison between the scattering spectra of core-shell and alloy particles shows that for particles with a Au/Ag volume ratio greater than 2, the structural difference does not imply any significant difference in the optical response. For such particles, while the retardation effects are not negligible, the scattering at the interface between the two metals in the core-shell case does not seem to modify the scattering behavior. The scattering at the interface is conversely not negligible for particles with a lower Au/Ag ratio, where the particle inner structure seems to be important.  相似文献   

2.
In this article, studies on noble metal nanostructures using near-field optical microscopic imaging are reviewed. We show that near-field transmission imaging and near-field two-photon excitation imaging provide valuable methods for investigation of plasmon resonances in metal nanostructures. The eigenfunctions of plasmon modes in metal nanoparticles are directly visualized using these methods. For metal nanowire systems, wavevectors of the longitudinal plasmon modes can be estimated directly from the wave-function images, and the dispersion relations are plotted and analyzed. Using ultrafast transient near-field imaging, we show that the deformation of the plasmon wave function takes place after photoexcitation of a gold nanorod. Such methods of plasmon-wave imaging may provide a unique basic tool for designing plasmon-mode-based nano-optical devices. We also demonstrate that the near-field two-photon excitation probability images reflect localized electric-field enhancements in metal nanostructures. We apply this method to gold nanosphere assemblies and clearly visualize the local enhanced optical fields in the interstitial sites between particles (hot spots). We also show the contribution of hot spots to surface enhanced Raman scattering. The methodology described here may provide valuable basic information about the characteristic enhanced optical fields in metal nanostructures as well as on their applications to new innovative research areas beyond the conventional scope of materials.  相似文献   

3.
In this work a novel semianalytical procedure to calculate the exact scattering behavior of complex particles made of intersecting spheres in the Rayleigh-Gans approximation is presented. Pickering emulsions, Janus particles, and lock and key particle colloids are particular cases of particles built from intersecting spheres. The proposed methodology is based on the decomposition of the complex particle as a sum of simpler components whose scattering properties can be evaluated using a simple integral. The procedure is developed for any number of spheres that intersect in pairs but it can be directly extended to intersections that involve more than two spheres at the same time. Some examples are presented to illustrate the application of the model to: (i) the study of the sensitivity of scattering spectra to detect complex particles from approximated model particles; (ii) the detection of different degrees of penetration of one particle into the other; (iii) the identification of the location of the cavity in particles that intersect with a spherical surface of contact; and (iv) the follow up of the evolution of a complex particle from a mix of its components.  相似文献   

4.
Progress in near-field optical spectroscopy research on metal nanoparticles demands a better understanding of the role played by particle-particle interactions and a deeper insight of the influence of the incident field wavelength. This is particularly true for scanning near-field optical microscopy (SNOM), where the mechanism by which some components of the evanescent illuminating field are transformed into propagating field components that carry information about the sample is at the core of the image formation and where the role played by the interactions between sample and tip remains a still open problem. In this perspective, we investigate numerically the optical behavior of small aggregates of spherical nanoparticles, taking into account the electromagnetic coupling between all particles and the apertureless tip. The tip is modeled as a sphere made of different materials characterized by appropriate dielectric functions. We find that the tip material affects both qualitatively and quantitatively the SNOM images; more important, from the analysis of the calculated scattering cross section, the resonance plasmon location of the whole (aggregate + tip) system undergoes detectable changes, if the tip is constituted of the same material of the sample, as the tip is situated in different positions. This modification of the plasmon frequencies induces a nontrivial variation of the near-field intensity as a function of the tip position and the resulting SNOM image can be distorted with respect to the actual shape of the sample. No simple arguments can be used to relate the value of the local field on the tip surface to the scattering cross section value; depending on the tip material, the comparison between these two measurements can help to clarify the role of basic interactions in the scattering mechanism.  相似文献   

5.
The use of silica shells offers many advantages in surface-enhanced Raman scattering (SERS)-based biological sensing applications due to their optical transparency, remarkable stability in environmental media, and improved biocompatibility. Here, we report a novel layer-by-layer method for the preparation of silica-hollow gold nanosphere (HGN) SERS tags. Poly(acrylic acid) was used to stabilize Raman reporter-tagged HGNs prior to the adsorption of a coupling agent, after which a silica shell was deposited onto the particle surface using Sto?ber's method. Importantly, competitive adsorption of the Raman reporter molecules and coupling agents, which results in unbalanced loading of reporter molecules on individual nanoparticles, was avoided using this method. As a result, the loading density of reporter molecules could be maximized. In addition, HGNs exhibited strong enhancement effects from the individual particles because of their ability to localize the surface electromagnetic fields through pinholes in the hollow particle structures. The proposed layer-by-layer silica-encapsulated HGN tags showed strong SERS signals as well as excellent multiplexing capabilities.  相似文献   

6.
We report on the optical properties of single isolated silver nanodisks and pairs of disks fabricated by electron beam lithography. By systematically varying the disk size and surface separation and recording elastic scattering spectra in different polarization configurations, we found evidence for extremely strong interparticle interactions. The dipolar surface plasmon resonance for polarization parallel to the dimer axis exhibited a red shift as the interdimer separation was decreased; as expected from previous work, an extremely strong shift was observed. The scattering spectra of single particles and pairs separated by more than one particle radius can be well described by the coupled dipole approximation (CDA), where the particles are approximated as point dipoles using a modified dipole polarizability for oblate spheroids. For smaller particle separations (d < 20 nm), the simple dipole model severely underestimates the particle interaction, indicating the importance of multipolar fields and finite-size effects. The discrete dipole approximation (DDA), which is a finite-element method, describes the experimental results well even at d < 20 nm, including particles that have metallic bridges.  相似文献   

7.
8.
In understanding of the hot spot phenomenon in single-molecule surface enhanced Raman scattering (SM-SERS), the electromagnetic field within the gaps of dimers (i.e., two particle systems) has attracted much interest as it provides significant field amplification over single isolated nanoparticles. In addition to the existing understanding of the dimer systems, we show in this paper that field enhancement within the gaps of a particle chain could maximize at a particle number N>2, due to the near-field coupled plasmon resonance of the chain. This particle number effect was theoretically observed for the gold (Au) nanoparticles chain but not for the silver (Ag) chain. We attribute the reason to the different behaviors of the dissipative damping of gold and silver in the visible wavelength range. The reported effect can be utilized to design effective gold substrate for SM-SERS applications.  相似文献   

9.
We present a theoretical study of the electromagnetic contribution to surface-enhanced Raman scattering (SERS) from a Langmuir-Blodgett film close to a metal surface. This macroscopic dipolar model fully accounts for the Raman-shifted emission so that meaningful SERS (electromagnetic) enhancement factors that do not depend only on the local electromagnetic field enhancement at the pump frequency are defined. For a plane metal surface, analytical SERS enhancement factors that are consistent for all pump beam polarization and molecular orientation are obtained. In order to investigate SERS on complex nanostructured metal surfaces, we introduce this model into the formally exact, Green's theorem surface integral equation formulation of the scattered electromagnetic field. This formulation is thus employed to calculate numerically the near-field and far-field emissions at the Raman-shifted frequency for very rough, random nanostructured surfaces, with emphasis on the impact of collective processes for varying pump frequency and Raman shift. Our results reveal that the widely used |E|4 approximation tends to overestimate average SERS enhancement factors.  相似文献   

10.
The structural changes produced by oxidation and reduction of a silver surface in 1 M CKl with and without illumination were examined by scanning electron microscopy. Laser illumination (632.8 nm) during the oxidation-reduction cycle (ORC) produces a surface covered with a high density of sub-μm sized particles. The silver particles are the result of the photolytic reduction of the silver chloride made possible by the presence of the applied electric field within the silver chloride layer which prevents the recombination of the photoelectrons and holes. As the maximum anodization voltage of the ORC is increase to +100 mV vs. SCE, the number of photolytically produced silver particles increases. As the maximum anodization voltage is increased from +100 mV to +200 mV, the individual particle size increases from ≈200 nm to ≈800 nm. The intensity of Raman scattering from water adsorbed on the silver surface was maximized by a laser illuminated ORC with a maximum anodization voltage of +100 mV.Since recent theoretical studies indicate an optimum particle size of r≈50 nm for maximizing the electromagnetic component of the enhancement, the present results indicate that either the individual silver particles contain small scale (≈50 nm) roughness features or the electromagnetic factors are not the sole contributors to the enhancement.  相似文献   

11.
Hyper Raleigh scattering, a common technique to investigate the second harmonic light scattered from a liquid suspension of molecular compounds and to determine their quadratic hyperpolarizability, has been used for aqueous suspensions of gold nanoparticles, the diameter of which ranges from 20 up to 150 nm. The hyper Rayleigh signal intensity was recorded as a function of the angle of polarization of the incident fundamental wave. For the particles with a diameter smaller than 50 nm, the response is dominated by the dipolar contribution arising from the deviation of the particle shape from that of a perfect sphere. For larger diameter particles, retardation effects in the interaction of the electromagnetic fields with the particles cannot be neglected any longer and the response deviates from the pure dipolar response, exhibiting a strong quadrupolar contribution. It is then shown that in order to quantify the relative magnitude of these two dipolar and quadrupolar contributions, a weighting parameter zeta(V) which equals unity for a pure quadrupolar contribution and vanishes for a pure dipolar response, can be introduced.  相似文献   

12.
13.
Khan I  Polwart E  McComb DW  Smith WE 《The Analyst》2004,129(10):950-955
A combined surface enhanced resonance Raman scattering (SERRS) and transmission electron microscopy (TEM) method has been developed allowing the same immobilised nanoparticles to be reliably located and studied by both techniques. The method allows large numbers of particles to be analysed by each technique relatively simply and the distribution of Raman enhancement between particles and clusters, as well as the relationship between particle microstructure and Raman enhancement, to be investigated. In addition, the effect of chemical and laser damage on the dye on the surface of the particles and the effect on the particles can be systematically investigated. These effects can cause time dependence fluctuations in Raman signals which could be confused with "blinking" from single molecules. Conditions were identified to enable Raman scattering to be detected without photodegradation to either the analyte molecules or the particles. Measurement outside this range gave rise to alterations in the spectra and to loss of signal. The extent of the damage to the analyte/particle if these conditions are not adhered to gives rise for concern about interpretation of changes in spectra observed unless an attempt is made to assess the limits of the conditions which can be applied before photodegradation or sample drying occurs. The method developed will enable reliable and systematic studies of the enhancement obtained from immobilised single particles by enabling the full power of high resolution TEM to be utilised to aid the development of a reliable SERRS theory.  相似文献   

14.
Over the past few decades, nanoparticles of noble metals such as silver exhibited significantly distinct physical, chemical and biological properties from their bulk counterparts. Nano-size particles of less than 100 nm in diameter are currently attracting increasing attention for the wide range of new applications in various fields of industry. Such powders can exhibit properties that differ substantially from those of bulk materials, as a result of small particle dimension, high surface area, quantum confinement and other effects. Most of the unique properties of nanoparticles require not only the particles to be of nano-sized, but also the particles be dispersed without agglomeration. Discoveries in the past decade have clearly demonstrated that the electromagnetic, optical and catalytic properties of silver nanoparticles are strongly influenced by shape, size and size distribution, which are often varied by varying the synthetic methods, reducing agents and stabilizers. Accordingly, this review presents different methods of preparation silver nanoparticles and application of these nanoparticles in different fields.  相似文献   

15.
The boundary region separating a latex particle from the surrounding medium has a great influence on the properties of latex dispersions. Four types of polystyrene and polystyrene/comonomer latices differing greatly in the structure of the boundary region were prepared. The first part of a series of papers reports on the preparation of the various latex dispersions. Mean particle sizes were obtained from simple turbidity measurements, quasi-elastic light scattering, and electron micrographs. The behavior of the particles in the centrifugal force field is a simple tool for detecting aggregation tendencies that are not directly related to salt stability. The BET-surface area agrees with the area calculated from the mean particle size when a sharp boundary and smooth surface is developed between the particle and the surrounding medium. In the case of particles with extended boundary regions (core/shell particles or particles with hairy envelopes), film formation reduces the specific surface area. Removal of soluble oligomers and polymers from the boundary region during subsequent treatments (purification and centrifugation before freeze-drying) can increase the surface area considerably.  相似文献   

16.
The effect of aggregation on the optical properties of nanometer-sized particles is studied. It is shown that for small noble metal clusters as well as for pigments of Fe2O3, TiN, or ZrN, the aggregation leads to changes in the color of the colloidal systems which are caused by electromagnetic coupling among the clusters in the aggregates. The model of interacting particles is shown to be helpful also for interpretation of optical properties of organic dyes with incorporated metal clusters and for interpretation of the reflectance of magnetooptical cluster systems. For soot particles it is shown that scattering and absorption are enhanced over the whole visible spectral region compared to isolated carbonaceous clusters. Finally, it is shown that the model of interacting clusters can also be applied for data interpretation in scanning near-field optical microscopy.  相似文献   

17.
This paper reports on the effect of sonication on SAz-1 and SWy-1 montmorillonite suspensions. Changes in the size of the particles of these materials and modifications of their properties have been investigated. The variation of the particle size has been analyzed by DLS (dynamic light scattering). In all cases the clay particles show a bimodal distribution. Sonication resulted in a decrease of the larger modal diameter, as well as a reduction of its volume percentage. Simultaneously, the proportion of the smallest particles increases. After 60 min of sonication, SAz-1 presented a very broad particle size distribution with a modal diameter of 283 nm. On the other hand, the SWy-1 sonicated for 60 min presents a bimodal distribution of particles at 140 and 454 nm. Changes in the properties of the clay suspensions due to sonication were evaluated spectroscopically from dye-clay interactions, using Methylene Blue. The acidic sites present in the interlamellar region, which are responsible for dye protonation, disappeared after sonication of the clay. The changes in the size of the scattering particles and the lack of acidic sites after sonication suggest that sonication induces delamination of the clay particles.  相似文献   

18.
For electrorheological (ER) suspensions, the aggregate structures of particles were observed in electric fields by the use of transparent cells with different electrode patterns. Although the suspension is dispersed to noninteracting particles without electric fields, many aggregates are formed on the electrode surface in electric fields. Since the dipole–dipole interactions cause chain structures of particles and equilibrium conformations of chains are always aligned with electric field, the aggregates indicate the presence of columns spanning the electrode gap. The particle concentration in columns which are developed between parallel-plate electrodes is about 22 vol %. In striped electrodes, the particles construct striped aggregates along the electrodes and no particles remain in the insulating region. The particle concentration in striped aggregates is about 35 vol %. The nonuniformity of electric field is responsible for the high particle concentration. The increase in particle concentration of column lead to the high yield stress of electrified suspension. Therefore, the ER performance of suspension as an overall response can be improved by the electrode design.  相似文献   

19.
The phenomenon of surface scattering of electromagnetic waves by single or multiple layers of films is reviewed and a special treatment for the total reflection of x rays is developed. This theory is applied to the analysis of the surface scattering observed in small-angle x-ray scattering (SAXS) studies of two-phase matter in polymers having lamella stacks or a flat interfacial boundary structure. Important features of this vector theory are the ability to calculate the surface scattering invariant, the absolute scattering intensity, and the surface roughness, which gives rise to dispersion of specular reflection from perfectly smooth surfaces. By considering the interfacial surface roughness of polystyrene crazes, the surface scattering spectrum is calculated theoretically and compared with some experimental results. Also the theory is presented in such a way as to compare surface scattering with volume scattering; i.e., both two- and three-dimensional scattering events can be simultaneously treated. This provides a new basis for quantitative analysis of crazes in polystyrene.  相似文献   

20.
This Letter describes how gold pyramidal nanoshells (nanopyramids) can be assembled into low- and high-order structures by varying the rate of solvent evaporation and surface wettability. Single-particle and individual-cluster dark field scattering spectra on isolated, dimers and trimers of nanopyramids were compared. We found that the short wavelength resonances blue-shifted as the particles assembled; the magnitude of this shift was greater for high-order structures. To test which assembled architecture supported a larger Raman-active volume, we compared their surface enhanced Raman scattering (SERS) response of the resonant Raman molecule methylene blue (λ(ex) = 633 nm). We discovered that high-order structures exhibited more Raman scattering compared to low-order assemblies. Finite-difference time-domain modeling of nanopyramid assemblies revealed that the highest electromagnetic field intensities were localized between adjacent particle faces, a result that was consistent with the SERS observations. Thus, the local spatial arrangement of the same number of nanoparticles in assembled clusters is an important design parameter for optimizing nanoparticle-based SERS sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号