首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国物理 B》2014,(1):347-356
In this study, we investigate theoretically the effect of spin-orbit coupling on the energy level spectrum and spin texturing of a quantum wire with a parabolic confining potential subjected to the perpendicular magnetic field. Highly accurate numerical calculations have been carried out using a finite element method. Our results reveal that the interplay between the spin-orbit interaction and the effective magnetic field significantly modifies the band structure, producing additional subband extrema and energy gaps. Competing effects between external field and spin-orbit interactions introduce comp|ex features in spin texturing owing to the couplings in energy subbands. We obtain that spatia~ modulation of the spin density along the wire width can be considerably modified by the spin-orbit coupling strength, magnetic field and charge carrier concentration.  相似文献   

2.
宋红州  张平  段素青  赵宪庚 《中国物理》2006,15(12):3019-3025
We have proposed a method to separate Rashba and Dresselhaus spin splittings in semiconductor quantum wells by using the intrinsic Hall effect. It is shown that the interference between Rashba and Dresselhaus terms can deflect the electrons in opposite transverse directions with a change of sign in the macroscopic Hall current, thus providing an alternative way to determine the different contributions to the spin--orbit coupling.  相似文献   

3.
We discuss the mechanism of the anomalous Hall effect in a Rashba-Dresselhaus two-dimensional electron gas subjected to a homogeneous out-of-plane magnetization. On the basis of a systematic treatment of the kinetic equations for the spin-density matrix, results are derived for the dynamic Hall conductivity in a closed form. Its nonanalytic dependence on both the scattering time and the frequency of the applied electric field is discussed. Except for in a special Rashba-Dresselhaus model, there is a finite intrinsic anomalous Hall effect, which is extremely sensitive to short-range elastic scattering.  相似文献   

4.
B Gisi  S Sakiroglu  &#  Sokmen 《中国物理 B》2016,25(1):17103-017103
In this work, we investigate the effects of interplay of spin–orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin–orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin–orbit couplings as well as the magnitude and the orientation angle of the external magnetic field.  相似文献   

5.
The influence of the Rashba spin-orbit coupling on the electron spin dynamics is investigated for a ballistic semiconductor quantum wire with a finite width. We monitor the spin evolution using the time-dependent Schrödinger equation. The pure spin precession characteristic of the 1D limit is lost in a 2D wire with a finite lateral width. In general, the time evolution in the latter case is characterized by several frequencies and a nonrigid spin motion.Received: 16 April 2003, Published online: 11 August 2003PACS: 73.21.Hb Quantum wires - 73.22.Dj Single particle states  相似文献   

6.
We have modeled the 4f 1-5d 1 absorption spectrum of a LiYF4:Ce3+ crystal at zero temperature using a microscopic model of the electron-phonon interaction and the real spectrum of LiYF4 lattice vibrations. Effects caused by mixing of the wave functions of different states of the 5d 1 excited configuration of the Ce3+ ion, which is induced by the electron-phonon interaction, are considered based on the calculations of the second-, third-, and fourth-order exact moments of curvature of the spectrum envelope. We have shown that the large value of the splitting between the maxima of the bands in the absorption spectrum that correspond to transitions to the third and fourth 5d 1 levels is a result of the nonadiabatic interaction of 5d electrons with lattice vibrations.  相似文献   

7.
《Current Applied Physics》2018,18(1):122-126
Based on the Green's function formalism, we investigated spin transport properties in one-dimensional three-terminal rings in the presence of the Rashba spin-orbit coupling (RSOC) and Dresselhaus spin-orbit coupling (DSOC). The conductance as a function of the Fermi energy shows typical resonance and antiresonance (conductance zero) characteristics in the absence of spin-orbit coupling (SOC). When one type of SOC (RSOC or DSOC) is introduced, the original conductance zeros are lifted, but new conductance zeros emerge. It is found that all the conductance zeros depend sensitively on the disorder, and the fluctuate weakens and smoothens the oscillations of the conductance. In the presence of both types of SOCs, the interplay between the RSOC and the DSOC opens a gap in the energy spectrum and breaks the cylindrical symmetry of the ring. Consequently, symmetrically coupled three-terminal rings show anisotropic conductances, which are robust against weak disorders.  相似文献   

8.
We find a dramatic enhancement of electron propagation along a narrow range of real-space angles from an isotropic source in a two-dimensional quantum well made from a zinc-blende semiconductor. This "electron-beam" formation is caused by the interplay between spin-orbit interaction originating from a perpendicular electric field to the quantum well and the intrinsic spin-orbit field of the zinc-blende crystal lattice in a quantum well, in situations where the two fields are different in strength but of the same order of magnitude. Beam formation is associated with caustics and can be described semiclassically using a stationary phase analysis.  相似文献   

9.
We investigate theoretically the spin-polarized electron transport for a wide-narrow-wide (WNW) quantum wire under the modulation of Rashba spin-orbit interaction (SOI). The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin-polarized electron transport is taken into account simultaneously via the spin-resolved lattice Green function method. It is found that a very large vertical spin-polarized current can be generated by the SOI-induced effective magnetic field at the structure-induced Fano resonance even in the presence of strong disorder. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOI strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field.  相似文献   

10.
Jiating Ni  Bin Chen 《Physics letters. A》2008,372(38):6026-6031
By using the Al'tshuler-Aronov-Spivak (AAS) model, we give the amplitude changing with Rashba spin-orbit interaction (SOI) and Dresselhaus SOI strength. In the first idea 1D square loop (SL), Rashba SOI acts on two sides while Dresselhaus SOI acts on the other two sides. In the second SL, we consume Rashba SOI and Dresselhaus SOI act on four sides simultaneously. This model can be replaced by another one that Rashba SOI and Dresselhaus SOI act on every side independently, and each side is twice long. We theoretically illustrate the influence of the Dresselhaus SOI on node position and number. To explain the “half oscillation” phenomenon found in experiment, we apply Dresselhaus SOI to the ideal 1D SL. The conclusion is that the Dresselhaus SOI has a strong effect on the emergence of “half oscillation”.  相似文献   

11.
We first report 0.5(2e2/h) conductance quantization in adiabatic quantum point contacts (QPCs) fabricated at high In-content InGaAs/InAlAs single heterojunctions under no magnetic field. This quantization seems difficult to understand, since the spin one-dimensional (1D) subbands in the QPCs are generally degenerated when B=0. However, this observation is reproducible in various QPC samples with different dimensions but not likely so definite as the conductance quantization in usual QPCs. It is noted that this particular heterojunction 2DEG is found to have high electron mobility of <5×105 cm2/Vs as well as very large Rashba spin-orbit (SO) coupling constant of <35×10−12 eVm. So that, the QPCs realized here can be regarded as a kind of Tomonaga-Luttinger wire with an enhanced Rashba interaction. In such a case, a mode coupling between the Rashba splitting 1D subbands gives rise to a spin-polarized transport in each ±k direction. This theory could be the one plausible candidate to explain the 0.5(2e2/h) conductance quantization observed here in the adiabatic QPC. This finding would be developed to novel spin-filters or spin-directional coupler devices based on nonmagnetic semiconductors.  相似文献   

12.
Using Kane's 8-band k·p theory and the envelope function approximation we derive a tight binding Hamiltonian for III–V semiconductor quantum well structures, which accurately models band structure and spin–orbit coupling. By applying a potential difference across the well we have calculated the Rashba spin-splitting in the lowest conduction subband. For identical well widths the Rashba splitting in InSb is shown to be approximately twice that of InAs and, in all cases, passes through a weak maximum with increasing quasimomentum.  相似文献   

13.
Experimental data on the anisotropy of electron spin resonance in a GaAs/AlGaAs quantum well have been interpreted. In has been shown that the spin-orbit interaction in quantum wells includes, in addition to the isotropic Bychkov-Rashba and anisotropic volume Dresselhaus contributions, the anisotropic contribution determined by the structure of interfaces.  相似文献   

14.
A spin device, consisting of parallel-coupled double quantum dots and three normal metal leads, is proposed to realize spin-polarized current without the help of magnetic field and magnetic material. Based on the Keldysh nonequilibrium Green function technique and equation of motion method, the spin-dependent current formula in each lead is derived. It is shown that not only a fully polarized current but also a tunable pure spin current can be obtained by modulating the structure parameters, strength of Rashba spin-orbit interaction and bias voltages properly. It further demonstrates the dependence of the spin-polarized current on the strength of the Rashba spin-orbit interaction.  相似文献   

15.
We study graphene nanoribbons (GNRs) with armchair edges in the presence of Rashba spin- orbit interactions (RSOI). We impose the boundary conditions on the tight binding Hamiltonians for bulk graphene with RSOI by means of a sine transform and study the influence of RSOI on the spectra and the spin polarization in detail. We derive the low energy approximation of the RSOI Hamiltonian for the zeroth and first order in momentum and test their ranges of validity. The choice of a basis appropriate for armchair boundaries is important in the case of mode-coupling effects and leads to results that are easy to work with.  相似文献   

16.
李明  张荣  刘斌  傅德颐  赵传阵  谢自力  修向前  郑有炓 《物理学报》2012,61(2):27103-027103
首先把本征值方程投影到导带的子空间中, 进而得到AlGaN/GaN量子阱中第一、二子带的Rashba自旋劈裂系数(α 1, α 2)和子带间自旋-轨道耦合系数η12. 然后自恰求解薛定谔方程和泊松方程计算了不同栅压的量子阱中的α 1, α 2η12, 并分别讨论了量子阱阱层、左右异质结界面和垒层对它们的贡献. 结果表明可以通过栅压来调节自旋-轨道耦合系数, 子带间自旋轨道耦合系数η12比Rashba自旋劈裂系数α 1, α 2小, 但基本在同一数量级.  相似文献   

17.
The spin-dependent electron transport is numerically studied in a nonmagnetic nanostructure in the presence of both Dresselhaus and Rashba spin-orbit interactions. It is shown that the large spin polarization can be achieved in such a structure mainly due to the Rashba spin-orbit term induced splitting of the resonant level. It is also shown that the spin polarization strongly depends on the well width and the thickness of the middle barrier as well as the height of the middle barrier.  相似文献   

18.
叶成芝  聂一行  梁九卿 《中国物理 B》2011,20(12):127202-127202
We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov-Bohm (AB) flux. This device possesses normal quasiparticle transmission between the two ferromagnetic leads, and normal and crossed Andreev reflections providing conductive holes. For the appropriate spin polarization of the ferromagnetic leads, RSOI and AB flux, the pure spin-up (or spin-down) current without net charge current in the right lead, which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction, can be obtained by adjusting the gate voltage, which may be used in practice as a pure spin-current injector.  相似文献   

19.
We study effects of the oft-neglected cubic Dresselhaus spin-orbit coupling (i.e., directly proportional p3) in GaAs/AlGaAs quantum dots. Using a semiclassical billiard model, we estimate the magnitude of the spin-orbit induced avoided crossings in a closed quantum dot in a Zeeman field. Using previous analyses based on random matrix theory, we calculate corresponding effects on the conductance through an open quantum dot. Combining our results with an experiment on an 8 microm2 quantum dot [D. M. Zumbühl, Phys. Rev. B 72, 081305 (2005)10.1103/PhysRevB.72.081305] suggests that (1) the GaAs Dresselhaus coupling constant gamma is approximately 9 eV A3, significantly less than the commonly cited value of 27.5 eV A3, and (2) the majority of the spin-flip effects can come from the cubic Dresselhaus term.  相似文献   

20.
Electronic transport through parallel coupled double quantum dots (DQD) with Rashba spin-orbit (RSO) interaction is investigated in Kondo regime by means of the slave-boson mean field approximation at zero temperature. By the co-action of the phase factor deduced by RSO interaction and the magnetic flux penetrating the parallel DQD, an interesting spin-dependent Kondo effect emerges. The molecular state representation theory is used to obtain a detailed understanding of the spin-dependent Kondo effect. It is shown that Quantum interference between the bonding Kondo state and antibonding state, which is modulated by the RSO interaction, plays a crucial role to the density of states and the linear conductance. The magnitude of each spin component conductance can be modulated by the RSO interaction strength. The conductance of each spin component exhibits 4π-periodic function with respect to φR. Moreover, the swap operation in the parallel DQD system can be implemented by tuning the RSO interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号