首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the dislocation type solution of the torsion of single crack,by using the concept of finite part integrals,we reduce the torsion problem of cylinder with a single crack into an integral equation with strong singularity.The numerical method is also obtained and several numerical examples are calculated successfully at the end of this paper.  相似文献   

2.
In this paper the writer uses Muskhelishvili single-layer potential function solutionand single crack solution for the torsion problem of a circular cylinder to discuss thetorsion problem of a composite cylinder with an internal crack,and the problem isreduced to a set of mixed-type integral equation with generalized Cauchy-kernel.Then,by using the integration formula of Gauss-Jacobi.the numerical method isestablished and several numerical examples are calculated.The torsional rigidity andthe stress intensity factors are obtained.The results of these examples fit the resultsobtained by the previous papers better.  相似文献   

3.
含有裂纹和夹杂的复合柱体的扭转   总被引:3,自引:0,他引:3  
汤任基  乐金朝 《力学学报》1992,24(3):350-360
本文根据Saint-Venant扭转理论,提出了一种能用于扭转分析的线夹杂模型,并得到了它的基本解,进而将此解与的单层势函数解及单裂纹基本解结合,对同时带有裂纹和夹杂的复合柱体的扭转作了讨论,最后将问题归为解一组混合型积分方程,并建议了数值解法。文中通过问题的退化,证明本文提出的夹杂模型在数学和力学上都是正确的,最后作了若干数值例子的计算,其结果令人满意。  相似文献   

4.
Separating the discontinuous solution by use of the single crack solution, together with the regular solution of harmonic function, the torsion problem of a cracked cylinder is reduced to solving a set of mixed-type integral equations and its numerical technique is then proposed by combining the numerical method of singular integral equation with the boundary element method. Several numerical examples are calculated which will be useful to engineering practice. The method proposed is characterized by its fine accuracy and convenience for using, which can be extended to the cases of multiple crack.The project supported by National Natural Science Foundation of China.  相似文献   

5.
Using the single crack solution and the regular solution of harmonic function,thetorsion problem of a cracked cylinder is reduced to solving a set of mixed-type integralequations which can be solved by combining the numerical method of singular integralequation with the boundary element method.Several numerical examples arecalculated and the stress intensity factors are obtained.  相似文献   

6.
IntroductionInthestrengthofmaterials[1],inordertoeliminatetheadditionaltorsioninathin_walledcylinderwithopencross_sectionunderbendingbyatransverseforce,itissufficienttoremovethetransverseforceatthebendingcenter.Thereforeanapproximatemethodtocalculatethe…  相似文献   

7.
In this paper,the functions of warping displacement interruption defined on the crack lines are taken for the fundamental unknown functions.The torsion problem of cracked circular cylinder is reduced to solving a system of integral equations with strongly singular kernels.Using the numerical method of these equations,the torsional rigidities and the stress intensity factors are calculated to solve the torsion problem of circular cylinder with star-type and other different types of cracks.The numerical results are satisfactory.  相似文献   

8.
An accurate and efficient numerical method for solving the crack-crack interaction problem is presented. The method is mainly by means of the dislocation model, stress superposition principle and Chebyshev polynomial expansion of the pseudo-traction. This method can be applied to compute the stress intensity factors of multiple kinked cracks and multiple rows of periodic cracks as well as the overall strains of rock masses containing multiple kinked cracks under complex loads. Many complex computational examples are given. The dependence of the crack-crack interaction on the crack configuration, the geometrical and physical parameters, and loads pattern, is investigated. By comparison with numerical results under confining pressure unloading, it is shown that the crack-crack interaction under axial-dimensional unloading is weaker than those under confining pressure unloading. Numerical results for single faults and crossed faults show that the single faults are more unstable than the crossed faults. It is found from numerical results for different crack lengths and different crack spacing that the interaction among kinked cracks decreases with an increase in length of the kinked cracks and the crack spacing under axial-dimensional unloading.  相似文献   

9.
In this paper, numerical solutions of singular integral equations are discussed in the analysis of axi-symmetric interface cracks under torsion and tension. The problems of a ring-shaped interface crack are formulated in terms of a system of singular integral equations on the basis of the body force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental density functions and power series, where the fundamental densities are chosen to express a two-dimensional interface crack exactly. The accuracy of the present analysis is verified by comparing the present results with the results obtained by other researchers for the limiting cases of the geometries. The calculation shows that the present method gives rapidly converging numerical results for those problems as well as for ordinary crack problems in homogeneous material. The stress intensity factors of a ring-shaped interface crack are shown in tables and charts with varying the material combinations and also geometrical conditions.  相似文献   

10.
通过间解的分离,本文将径向多裂纹柱体的导曲函两个调和函数表示,使问题归为解一组混混合型积分方程。针对方程的特点,本文联合使用三次样条边界法与奇异积分方程的数值方法对所得方程建立了数值法,并对裂纹相交情形作了特殊处理。最后对工程中感兴趣的一些典型的多裂纹柱体的扭转作了例题计算,结果表明,本文方法具有收敛快,精度高的特点。  相似文献   

11.
IntroductionWhilewestudythestrengthandthecrackofpractisingcomponents,thematerialdefectionshouldbeconsidered .IntheopinionsofCrackMechanics,thematerialdefectioncanbereducedtoplanarcracksandinclusions.Besides,theproblemofshort_fibercompositematerialsuchas…  相似文献   

12.
The Saint-Venant torsion problems of a cylinder with curvilinear cracks were considered and reduced to solving the boundary integral equations only on cracks. Using the interpolation models for both singular crack tip elements and other crack linear elements, the boundary element formulas of the torsion rigidity and stress intensity factors were given. Some typical torsion problems of a cylinder involving a straight, kinked or curvilinear crack were calculated. The obtained results for the case of straight crack agree well with those given by using the Gauss-Chebyshev integration formulas, which demonstrates the validity and applicability of the present boundary element method.  相似文献   

13.
裂纹的聚集、扩展、分叉是岩石等脆性材料破坏失效的关键因素,本文在验证了近场动力学方法在研究岩石类材料裂纹动态扩展方面的有效性之后,采用近场动力学方法分别对冲击载荷作用下含有双裂纹岩石材料和单轴压缩作用下含单斜裂纹的岩石材料进行数值模拟.结果表明,对于双垂直裂纹,其裂纹扩展路径大致与预制裂纹成70°夹角;对于单裂纹,裂纹的扩展路径随裂纹倾角的变化而变化,最终导致构件的整体破坏.数值模拟结果表明近场动力学方法可以很好地模拟岩石等脆性材料的裂纹扩展直至破坏的过程,反映裂纹扩展的物理机理;其作为一种新的基于非局部理论的数值方法,在地下岩体工程方面及页岩气的开采方面会有很好的发展前景.  相似文献   

14.
A hollow functionally graded composite cylinder under static torsion, which consists of an inner and outer elastic circular tube with a cylindrical interface crack, is studied in this work. By utilizing Fourier integral transform method, the mixed boundary value problem is reduced to a Cauchy singular integral equation, from which the numerical results of the stress intensity factor are obtained by the Lobatto–Chebyshev quadrature technique. Numerical results demonstrate the coupled effects of geometrical, physical, and functionally graded parameters on the interfacial fracture behavior.  相似文献   

15.
赵大华  李华锋 《实验力学》2006,21(4):513-518
工程结构裂纹尖端应力强度因子(SIF)由于形状、荷载的复杂性及边界条件的不确定性,难以用解析法得到,数值计算也有困难,而光弹性法弥补了上述方法的不足。本文用环氧树脂制作圆轴模型,采用机加工的方法制作圆轴模型裂纹,然后将加载模型进行应力冻结,通过光弹性实验研究分析了圆轴裂纹尖端应力分布。由于带环形裂纹的圆轴在弯扭组合变形时,离中性轴最远的裂纹尖端处于复合裂纹状态,而三维光弹性应力冻结法是测定复杂三维问题复合裂纹的有效方法。本文用双参数法测定I型应力强度因子,用切片逐次削去法测定Ⅲ型应力强度因子,实验误差较小。  相似文献   

16.
The problem of a stationary semi-infinite crack in an elastic solid with microstructures subject to remote classical KIII field is investigated in the present work. The material behavior is described by the indeterminate theory of couple stress elasticity developed by Koiter. This constitutive model includes the characteristic lengths in bending and torsion and thus it is able to account for the underlying microstructure of the material as well as for the strong size effects arising at small scales. The stress and displacement fields turn out to be strongly influenced by the ratio between the characteristic lengths. Moreover, the symmetric stress field turns out to be finite at the crack tip, whereas the skew-symmetric stress field displays a strong singularity. Ahead of the crack tip within a zone smaller than the characteristic length in torsion, the total shear stress and reduced tractions occur with the opposite sign with respect to the classical LEFM solution, due to the relative rotation of the microstructural particles currently at the crack tip. The asymptotic fields dominate within this zone, which however has limited physical relevance and becomes vanishing small for a characteristic length in torsion of zero. In this limiting case the full-field solution recovers the classical KIII field with square-root stress singularity. Outside the zone where the total shear stress is negative, the full-field solution exhibits a bounded maximum for the total shear stress ahead of the crack tip, whose magnitude can be adopted as a measure of the critical stress level for crack advancing. The corresponding fracture criterion defines a critical stress intensity factor, which increases with the characteristic length in torsion. Moreover, the occurrence of a sharp crack profile denotes that the crack becomes stiffer with respect to the classical elastic response, thus revealing that the presence of microstructures may shield the crack tip from fracture.  相似文献   

17.
A finite deformation theory of mechanism-based strain gradient (MSG) plasticity is developed in this paper based on the Taylor dislocation model. The theory ensures the proper decomposition of deformation in order to exclude the volumetric deformation from the strain gradient tensor since the latter represents the density of geometrically necessary dislocations. The solution for a thin cylinder under large torsion is obtained. The numerical method is used to investigate the finite deformation crack tip field in MSG plasticity. It is established that the stress level around a crack tip in MSG plasticity is significantly higher than its counterpart (i.e. HRR field) in classical plasticity.  相似文献   

18.
Singular integral equations are used to formulate the torsion problem of a circular cylinder containing a polygonal opening and a line crack. The formulation is based on degenerating a system of connecting line cracks to that of a polygon, the sides of which coincides with the cracks. Considered, in particular, is the torsion of a circular cylinder with a rectangular hole and a nearby slanted line crack. Mode III stress intensity factors are computed at both ends of the crack to reflect their relative position to the rectangular hole in addition to change in the dimensions of the crack relative to the other geometric variables. Recognizing that the singular behavior of the stresses near a reentrant's corner differs from that of the crack tip, intensification of the local stresses at the corners of the rectangular hole is also examined. The results show the influence of the crack size and position.  相似文献   

19.
This paper presents a numerical approach of fatigue growth analysis of cracks emanating from a hole in infinite elastic plate subjected to remote loads. It involves a generation of Bueckner’s principle and a hybrid displacement discontinuity method (a boundary element method) proposed recently by the senior author of the paper. Because of an intrinsic feature of the boundary element method, a general crack growth problem can be solved in a single region formulation. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not necessary. Crack extension is modeled conveniently by adding new boundary elements on the incremental crack extension to the previous crack boundaries. As an example, fatigue growth process of an inclined crack in an infinite plate under uniaxial cycle load is modeled to illustrate the effectiveness of the numerical approach. In addition, fatigue growth of cracks emanating from a circular hole in infinite elastic plate subjected to remote loads is investigated by using the numerical approach. Many numerical results are given  相似文献   

20.
A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally, the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号