首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu J  Pawliszyn J 《Talanta》1992,39(10):1281-1288
A robust, inexpensive and versatile capillary electrophoresis (CE) system for routine and rapid analysis is reported, which consists of a rugged cartridge holding a 20-mum i.d. 15-cm long capillary, and an inexpensive, universal and sensitive concentration gradient detector. The design of the cartridge simplifies the sample introduction process and makes it possible to perform many separation modes, including moving boundary capillary electrophoresis (MBCE), capillary zone electrophoresis (CZE), capillary isotachophoresis (CITP) and capillary isoelectric focusing (CIEF), on the same system. This arrangement provides more information about a sample's components since analytes can be separated by different modes performed on the same CE system. The detector only consists of a low-power HeNe laser, or laser diode, and a photodiode position sensor. Amino acids and proteins of 10(-6)-10(-3)M concentration can be separated by different capillary electrophoretic modes, and detected directly by the detector. The universal detector shows particularly good sensitivity when applied to CE separation modes having self-concentration and focusing effects. Femtomoles of proteins were separated and detected with CIEF. In addition, a short and narrow capillary allows use of high electrical fields which facilitate rapid separations. Four amino acids at millimolar concentrations were fully separated and detected in less than 80 sec by the MBCE mode when a high electric field was applied. The physical size of the whole system is much smaller than that of conventional CE instruments with UV absorbance or fluorescence detector.  相似文献   

2.
The application of capillary electrophoresis-mass spectrometry (CE-MS) to the analysis of compounds of concern to the aquaculture industry is reported. Two different approaches to coupling the CE column to an IonSpray atmospheric pressure ionization (API) interface, viz., a liquid-junction and a coaxial arrangement, are describe and compared with regard to ruggedness, ease of use, sensitivity and electrophoretic performance. The different injection modes used in three commercial capillary electrophoresis systems were also evaluated for their applicability to CE-MS. The use of CE-MS for the analysis of a variety of classes of antibiotics used in the fish aquaculture industry, such as the sulfonamides and their potentiators (e.g., trimethoprim), is demonstrated and was used to confirm the presence of these components in shellfish extracts at the low ppm level. CE-MS was also applied to the analysis of marine toxins such as saxitoxin and its analogues which are associated with paralytic shellfish poisoning, and also the toxins responsible for amnesic and diarrheic shellfish poisoning. Tandem mass spectrometry (MS-MS) was used to provide structural information on these analytes, and the ability to distinguish isomeric compounds based on their different migration and fragmentation characteristics using CE-MS-MS is demonstrated.  相似文献   

3.
Last years chemical properties of carbon nanotubes (CNTs) have attracted high interest. One of the most important issues is the capability of CNTs to adsorb analytes on its surface. In this work, such property has been used to preconcentrate trace tetracyclines from environmental water samples at the trace level. Multi-walled carbon nanotubes (MWNTs) have showed higher capacity than other two single-walled carbon nanotubes (SWNTs). Preconcentration of the samples was performed in a flow system at-line coupled to the CE-MS equipment. The preconcentration of tetracyclines on MWNTs followed by capillary electrophoresis-mass spectrometry allows the detection of 0.30-0.69 microg/L of tetracyclines for the analysis of 10 mL of samples. Recoveries for the analysis of spiked samples ranged from 98.6 to 103.2% and the precision from 5.4 to 8.2%. Separation of tetracylines in the electrophoretic system was achieved using 50 mM formic acid at pH 2.0 as a background electrolyte. Atmospheric pressure electrospray ionization mass spectrometry detection was accomplished using 50:50 (v/v) methanol/water containing 0.5% (v/v) formic acid as a sheath liquid.  相似文献   

4.
A new hexane-in-water microemulsion was investigated as buffer in microemulsion EKC (MEEKC). At difference with other microemulsions, the addition of cosurfactant was not necessary to stabilize the microemulsion. The proposed microemulsion was successfully used to achieve electrophoretic separation of seven antibiotics including nitroimidazoles, cephapirin and tetracyclines. Selectivity and separation efficiency achieved in MEEKC were compared with MEKC. MEEKC technique proved to be more efficient than MEKC for performing the separation of the analytes and the presence of microemulsions was found to be critical to achieve the separation of tetracyclines. The proposed microemulsion also points out that solvents with high volatility, such as hexane, can be stabilized and used as a microemulsion of SDS.  相似文献   

5.
We report application of a new UV imaging detector incorporating an active pixel sensor in an electrophoretic enzyme assay for penicillinase (beta-lactamase) with multiple substrates. The method based on electrophoretically mediated microanalysis was developed on a standard CE system with a single-point diode array detector and 200 nm UV wavelength, then transferred to a parallel capillary setup with the UV imaging detector for screening of penicillinase substrate specificity. One capillary is used for the assay and the other for reference, with an enzyme solution plug introduced into the first at the same time as a water plug into the second capillary. A mixture of antibiotics and markers is subsequently introduced as a sample plug to both capillaries, and driven through the enzyme (or water) plug by application of voltage. Most individual reactant and product peaks were separated and compounds amenable to beta-lactam hydrolysis could readily be identified and the extent of the reaction quantified within a single electrophoretic run.  相似文献   

6.
Shamsi SA 《Electrophoresis》2002,23(22-23):4036-4051
A review is presented to highlight several approaches for coupling capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) for analysis of chiral compounds. A short discussion of commercially available CE-MS instruments and interface design is followed by a detail review on various modes of chiral CE-MS. In general, for each CE-MS mode, the capabilities, applications and limitations for chiral analysis have been pointed out. The first mode, chiral capillary zone electrophoresis-mass spectrometry (CZE-MS) in which neutral derivatized cyclodextrins (CDs) are used is possible using either column coupling with voltage switching or a partial-filling technique (PFT). However, some applications of direct coupling of CZE-MS mode are also reported. The second mode is a chiral electrokinetic chromatography-mass spectrometry (EKC-MS) in which a charged chiral selector such as a sulfated beta-CD or a vancomycin could be conveniently employed. This is because these chiral selectors have a significantly higher countercurrent electrophoretic mobility which prevents the entrance of these selectors into the mass spectrometer. The combination of counter-migration and PFT demonstrates that this synergism could be successfully applied to chiral analysis of a broader range of compounds. It is well-known that the on-line coupling of micellar electrokinetic chromatography to mass spectrometry (MEKC-MS) is problematic because the high surface activity and nonvolatile nature of conventional surfactant molecules lower the electrospray ionization efficiency. However, a recent report demonstrates that this hyphenation is now possible with the use of molecular micelles. Various MEKC-ESI-MS parameters that can be used to optimize both chiral resolution and ESI response are discussed. Finally, two recent examples that demonstrate the feasibility of using either open-tubular or packed chiral CEC with MS are reviewed. This survey will attempt to cover the state-of-the-art on various modes of CE-MS from 1998 up to 2002.  相似文献   

7.
P Palatzky  FM Matysik 《Electrophoresis》2012,33(17):2689-2694
Electrochemically assisted injection (EAI) is an attractive injection concept for CE that enables the separation of neutral analytes via electrochemical generation of charged species during the injection process. A new semiautomated EAI configuration was developed and applied in conjunction with CE-MS (EAI-CE-MS). The EAI cell arrangement consists of an integrated buffer reservoir for CEseparations and a compartment holding screen-printed electrodes. A drop of sample solution (50 μL) was sufficient to cover the three-electrode structures. A piezo motor provided a fast and precise capillary positioning over the screen-printed electrode assembly. Using ferrocene methanol as a model system, the EAI arrangement was characterized regarding coulometric efficiency, precision, and sensitivity of electrospray ionization-time-of-flight-MS. The formation of the cationic oxidation product of ferrocene methanol enhanced the sensitivity of CE-MS determination by two orders of magnitude and the electrochemically formed product showed a migration time corresponding to its individual electrophoretic mobility. Preliminary studies of EAI-CE-MS in the field of the analysis of nitroaromatic compounds were carried out. The formation of corresponding hydroxylamines and amines paved the way for selective and sensitive CE-MS determinations without the need of adding surfactants to the electrophoresis buffer.  相似文献   

8.
The potential of capillary electrophoresis (CE) for the separation of peptides has been extensively demonstrated in the last decade. Their correct characterization and sequenciation is a difficult task that can be accomplished using CE-mass spectrometry (CE-MS). An important limitation of CE-MS is the buffer choice since it should provide an adequate CE separation without ruining the MS signal. In this work, a new strategy is used to help to solve this limitation based on the combination of two different methodologies. Namely, an ab initio semiempirical model that relates electrophoretic behavior of peptides to their sequence is first used to obtain in a fast and easy way adequate CE buffers compatible with MS analysis. Next, CE-MS is used to separate and characterize peptides via the determination of their relative molecular masses. The usefulness of this procedure is demonstrated analyzing in a single CE-MS run a group of 10 standard peptides of very different nature (i.e., relative molecular masses ranging from 132 to 1037 and isoelectric points ranging from 5.69 to 10.62). It is concluded that the use of this strategy can help to overcome the buffer limitation in CE-MS.  相似文献   

9.
魏波  马遥  田文哲  赵新颖  屈锋 《色谱》2021,39(6):559-566
该文为2020年毛细管电泳(capillary electrophoresis,CE)技术年度回顾.归纳总结了以"capillary electro-phoresis-mass spectrometry"或"capillary isoelectric focusing"或"micellar electrokinetic...  相似文献   

10.
Erny GL  Marina ML  Cifuentes A 《Electrophoresis》2007,28(22):4192-4201
In this work, an original CE-MS method has been developed to analyze the complex zein protein fractions from maize. A thorough optimization of: (i) zein protein extraction, (ii) CE separation, and (iii) electrospray-MS (ESI-MS) detection is carried out in order to obtain highly informative CE-MS profiles of this fraction. The developed CE-MS method provides good separation of multiple zein proteins based on their electrophoretic mobilities as well as adequate characterization of these proteins based on their M(r). Zein proteins with small M(r) differences (below 100 Da) were easily separated and successfully analyzed by CE-MS. Thus, apart of the so-called 15-kDa-beta-zein and 16-kDa-gamma-zein, which are demonstrated to be formed by a heterogeneous group of proteins, numerous alpha-zeins belonging to the 19- and 22-kDa fraction were also identified for the first time in this work. The usefulness of this CE-MS method was corroborated by comparing the zein-protein fingerprints of various maize lines including transgenic and their corresponding nontransgenic isogenic lines cultivated under the same conditions.  相似文献   

11.
A CE method utilizing triple quadrupole electrospray (ES) MS (MS/MS) detection was developed and validated for the simultaneous measurement of nucleoside 5'-triphosphate and 5'-monophosphate anabolites of the anti-HIV (human immunodeficiency virus) didanosine (ddAMP, ddATP) and stavudine (d4TMP, d4TTP), among a pool of 14 endogenous 5'-mono-, di-, and triphosphate nucleosides. These compounds were spiked and extracted from peripheral blood mononuclear cells (PBMCs) which are the sites of HIV replication and drug action. An acetic acid/ammonia buffer (pH 10, ionic strength of 40 mM) was selected as running electrolyte, and the separation was performed by the simultaneous application of a CE voltage of +30 kV and an overimposed pressure of 28 mbar (0.4 psi). The application of pressure assistance was needed to provide stable ES conditions for successful coupling. The coupling was carried out with a modified sheath-flow interface, with one uninterrupted capillary (80 cmx 50 microm id; 192 microm od) in a dimension that fits into the ESI needle to get a stable ion spray. Some CE-MS parameters such as overimposed pressure, sheath-liquid composition, sheath-liquid and sheath-gas flow rates, ES voltage, and the CE capillary position were optimized in order to obtain an optimal sensitivity. The use of perfluorinated alcohols and acids in the coaxial sheath-liquid make-up (2,2,2-trifluoroethanol + 0.2 mM tridecafluoroheptanoic acid) appeared to provide the best MS sensitivity and improve the stability of spray. The linearity of the CE-MS and CE-MS/MS methods was checked under these conditions. Validation parameters such as accuracy, intraday and interday precision, and LOQs were determined in CE-MS/MS mode. Finally, the quantitation of d4T-TP and ddA-TP was validated in this CE-MS/MS system.  相似文献   

12.
A novel high performance system to control the temperature of the microcartridge in on-line solid phase extraction capillary electrophoresis (SPE–CE) is introduced. The mini-device consists in a thermostatic bath that fits inside of the cassette of any commercial CE instrument, while its temperature is controlled from an external circuit of liquid connecting three different water baths. The circuits are controlled from a switchboard connected to an array of electrovalves that allow to rapidly alternate the water circulation through the mini-thermostatic-bath between temperatures from 5 to 90 °C. The combination of the mini-device and the forced-air thermostatization system of the commercial CE instrument allows to optimize independently the temperature of the sample loading, the clean-up, the analyte elution and the electrophoretic separation steps.  相似文献   

13.
A pressure-assisted capillary electrophoresis-ion trap mass spectrometry method was developed for the analysis of eight heparin-derived disaccharides. A 30 mM formic acid buffer at pH 3.20 was selected as running electrolyte, and the separation was performed by the simultaneous application of a CE voltage of -30 kV and an overimposed pressure of 0.5 p.s.i. (3.45 kPa). The application of pressure assistance was needed to provide stable electrospray conditions for successful coupling. The linearity of the CE-MS and CE-MS-MS methods was checked under these conditions. Quality parameters such as run-to-run precision and limits of detection were established in both CE-MS and CE-MS-MS modes. Finally, enzymatically depolymerised bovine and porcine mucosal heparins were analysed in this CE-MS system and the characteristic relative molar percentages of major and minor disaccharides were calculated.  相似文献   

14.
In recent years, capillary electrophoresis coupled to mass spectrometry (CE-MS) has been increasingly applied in clinical research especially in the context of chronic and age-associated diseases, such as chronic kidney disease, heart failure and cancer. Biomarkers identified using this technique are already used for diagnosis, prognosis and monitoring of these complex diseases, as well as patient stratification in clinical trials. CE-MS allows for a comprehensive assessment of small molecular weight proteins and peptides (<20 kDa) through the combination of the high resolution and reproducibility of CE and the distinct sensitivity of MS, in a high-throughput system. In this study we assessed CE-MS analytical performance with regards to its inter- and intra-day reproducibility, variability and efficiency in peptide detection, along with a characterization of the urinary peptidome content. To this end, CE-MS performance was evaluated based on 72 measurements of a standard urine sample (60 for inter- and 12 for intra-day assessment) analyzed during the second quarter of 2021. Analysis was performed per run, per peptide, as well as at the level of biomarker panels. The obtained datasets showed high correlation between the different runs, low variation of the ten highest average individual log2 signal intensities (coefficient of variation, CV < 10%) and very low variation of biomarker panels applied (CV close to 1%). The findings of the study support the analytical performance of CE-MS, underlining its value for clinical application.  相似文献   

15.
Capillary sieving electrophoresis utilizing SDS (CE(SDS)) is one of the most applied methods for the analysis of antibody (mAb) size heterogeneity in the biopharmaceutical industry. Inadequate peak identification of observed protein fragments is still a major issue. In a recent publication, we introduced an electrophoretic 2D system, enabling online mass spectrometric detection of generic CE(SDS) separated peaks and identification of several mAb fragments. However, an improvement regarding system stability and handling of the approach was desired. Here, we introduce a novel 8-port valve in conjunction with an optimized decomplexation strategy. The valve contains four sample loops with increased distances between the separation dimensions. Thus, successively coinjection of solvent and cationic surfactant without any additional detector in the second dimension is enabled, simplifying the decomplexation strategy. Removal efficiency was optimized by testing different volumes of solvents as presample and cationic surfactant as postsample zone. 2D measurements of the light and heavy chain of the reduced NIST mAb with the 8-port valve and the optimized decomplexation strategy demonstrates the increased robustness of the system. The presented novel set-up is a step toward routine application of CE(SDS)-CZE-MS for impurity characterization of proteins in the biopharmaceutical field.  相似文献   

16.
Developments in the fields of protein chemistry, proteomics and biotechnology have increased the demand for suitable analytical techniques for the analysis of intact proteins. In 1989, capillary electrophoresis (CE) was combined with mass spectrometry (MS) for the first time and its potential usefulness for the analysis of intact (i.e. non-digested) proteins was shown. This article provides an overview of the applications of CE-MS within the field of intact protein analysis. The principles of the applied CE modes and ionization techniques used for CE-MS of intact proteins are shortly described. It is shown that separations are predominantly carried out by capillary zone electrophoresis and capillary isoelectric focusing, whereas electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are the most popular ionization techniques used for interfacing. The combination of CE with inductively coupled plasma (ICP) MS for the analysis of metalloproteins is also discussed. The various CE-MS combinations are systematically outlined and tables provide extensive overviews of the applications of each technique for intact protein analysis. Selected examples are given to illustrate the usefulness of the CE-MS techniques. Examples include protein isoform assignment, single cell analysis, metalloprotein characterization, proteomics and biomarker screening. Finally, chip-based electrophoresis combined with MS is shortly treated and some of its applications are described. It is concluded that CE-MS represents a powerful tool for the analysis of intact proteins yielding unique separations and information.  相似文献   

17.
The prediction of peptide mobility by capillary electrophoresis (CE) coupled to electrospray mass spectrometry (MS) is studied in order to verify the validity of the semi-empirical models developed in classical CE. This work relies on the experimental determination of the electrophoretic mobilities of 68 peptides, different in charge and in size. The results indicate that the prediction is possible in CE-MS experiments, in spite of the restraints inherent in the coupling conditions. The best fit of experimental data was obtained with the Offord's model. The efficiency of the model was confirmed by the analysis of a peptide mixture in CE-MS.  相似文献   

18.
Simpson DC  Smith RD 《Electrophoresis》2005,26(7-8):1291-1305
Mass spectrometry (MS)-based proteomics is currently dominated by the analysis of peptides originating either from digestion of proteins separated by two-dimensional gel electrophoresis (2-DE) or from global digestion; the simple peptide mixtures obtained from digestion of gel-separated proteins do not usually require further separation, while the complex peptide mixtures obtained by global digestion are most frequently separated by chromatographic techniques. Capillary electrophoresis (CE) provides alternatives to 2-DE for protein separation and alternatives to chromatography for peptide separation. This review attempts to elucidate how the most promising CE modes, capillary zone electrophoresis (CZE) and capillary isoelectric focusing (CIEF), might best be applied to MS-based proteomics. CE-MS interfacing, mass analyzer performance, column coating to minimize analyte adsorption, and sample stacking for CZE are considered prior to examining numerous applications. Finally, multidimensional systems that incorporate CE techniques are examined; CZE often finds use as a fast, final dimension before ionization for MS, while CIEF, being an equilibrium technique, is well-suited to being the first dimension in automated fractionation systems.  相似文献   

19.
CE coupled to MS has proven to be a powerful analytical tool for the characterization of intact proteins, as it combines the high separation efficiency of CE with the selectivity of MS. This review provides an overview of the development and application of CE-MS methods within the field of intact protein analysis as published between January 2007 and June 2010. Ongoing technological developments with respect to CE-MS interfacing, capillary coatings for CE-MS, coupling of CIEF with MS and chip-based CE-MS are treated. Furthermore, CE-MS of intact proteins involving ESI, MALDI and ICP ionization is outlined and overviews of the use of the various CE-MS methods are provided by tables. Representative examples illustrate the applicability of CE-MS for the characterization of proteins, including glycoproteins, biopharmaceuticals, protein-ligand complexes, biomarkers and dietary proteins. It is concluded that CE-MS is a valuable technique with high potential for intact protein analysis, providing useful information on protein identity and purity, including modifications and degradation products.  相似文献   

20.
A method using capillary electrophoresis-mass spectrometry (CE-MS) was developed for the structural elucidation of bupivacaine and metabolites in rat urine. Prior to CE-MS analysis, solid-phase extraction (SPE) was used for sample cleanup and preconcentration purposes. Exact mass and tandem mass spectrometric (MS/MS) experiments were performed to obtain structural information about the unknown metabolites. Two instruments with different mass analyzers were used for mass spectrometric detection. A quadrupole time-of-flight (Q-TOF) and a magnetic sector hybrid instrument were coupled to CE and used for the analysis of urine extracts. Hydroxybupivacaine as well as five other isomerically different metabolites were detected including methoxylated bupivacaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号