首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ding MY  Tanaka K  Hu W  Hasebe K  Haddad PR 《The Analyst》2001,126(5):567-570
A non-suppressed conductivity detection ion chromatographic method using a weakly acidic cation-exchange column (Tosoh TSKgel OApak-A) was developed for the simultaneous separation and determination of common inorganic anions (Cl-, NO3- and SO4(2-)) and cations (Na+, NH4+, K+, Mg2+ and Ca2+). A satisfactory separation of these anions and cations on the weakly acidic cation-exchange column was achieved in 25 min by elution with a mixture of 1.6 mmol L-1 pyridine-2,6-dicarboxylic acid and 8.0 mmol L-1 18-crown-6 at flow rate of 1.0 mL min-1. On this weakly acidic cation-exchange resin, anions were retained by an ion-exclusion mechanism and cations by a cation-exchange mechanism. The linear range of the peak area calibration curves for all analytes were up to two orders of magnitude. The detection limits calculated at S/N = 3 ranged from 0.25 to 1.9 mumol L-1 for anions and cations. The ion-exclusion chromatography-cation-exchange chromatography method developed in this work was successfully applied to the simultaneous determination of major inorganic anions and cations in rainwater, tap water and snow water samples.  相似文献   

2.
Several methods are presented for the routine ultra-trace analytical monitoring of inorganic and organic anions and cations on the surface and in the native oxide of silicon wafers--the wafer-surface water-extraction method, the vapor-phase-decomposition method, and the re-dissolving method. Electrokinetic injection, sample stacking, and electrolyte composition were, therefore, optimized and made robust. For electrokinetic injection with transient isotachophoretic preconcentration a linear range of 0.05 to 0.5 micromol L(-1) was obtained; for sample stacking the linear range was 0.5 to 10 micromol L(-1), even in the presence of up to 750 micromol L(-1) hydrofluoric acid. Inorganic anions and monovalent carboxylic acids are predominately dissolved in the aqueous layer on the wafer surface whereas dicarboxylic acids are chemically bonded to the silanol groups and form esters.  相似文献   

3.
A contactless conductometric detection (CCD) system for capillary electrophoresis (CE) with a flexible detection cell was applied for the simultaneous determination of small anions and/or cations in rain, surface and drainage water samples. The applied frequency, the amplitude of the input signal, the electrolyte conductivity and electrode distance were found to be the most significant factors affecting the detection sensitivity. 2-(N-Morpholino)ethanesulfonic acid/histidine-based (MES/His) electrolytes were used for direct conductivity detection of anions and cations, while ammonium acetate was selected for indirect conductivity determination of alkylammonium salts. For the simultaneous separation procedure, involving dual-opposite end injection, an electrolyte consisting of 20 mM MES/His, 1.5 mM 18-crown-6 and 20 microM cetyltrimethylammonium bromide provided baseline separation of 13 anions and cations in less than 6 min. The detection limits achieved were 7-30 micrograms/l for direct conductometric detection of various common inorganic cations and anions, excluding F- (62 micrograms/l) and H2PO4- (250 micrograms/l), and 35-178 micrograms/l for indirect conductometric detection of alkyl ammonium cations. The developed electrophoretic method with conductometric detection was compared to ion chromatography.  相似文献   

4.
建立了高氯、高钠油田回注水中痕量无机阴、阳离子和有机酸的离子色谱分析方法。对高钠基质中痕量阳离子的测定,选用IonPac CS12A分析柱、H2SO4溶液梯度淋洗、电导检测器检测;对高氯基质中阴离子及有机酸的测定,选用对OH-具有高选择性的高容量的IonPac AS11-HC柱、KOH梯度淋洗、电导检测器检测。在优化的梯度淋洗条件下,高氯或高钠的存在不影响痕量阴离子或阳离子的测定。该方法具有良好的线性(r=0.9926~0.9990)和精密度(测定组分峰面积的相对标准偏差(n=7)在8.0%以下),回收率  相似文献   

5.
Poly(aspartic acid)-silica (PolyCAT A), originally designed for the cation-exchange chromatography of proteins, is proposed for the simultaneous ion chromatographic separation of inorganic anions and cations. This is possible owing to the zwitterion-exchange properties of this stationary phase, which are attributed to the presence of both protonated aminopropyl and dissociated carboxylic groups in poly(aspartic acid) attached to the silica. The retention of alkali metal (Li+, Na+, K+), alkaline earth metal (Mg2+, Ca2+), ammonium and inorganic anions (Cl-, H2PO4-, Br-, NO2-, I-, IO3-, NO3-, ClO4-, SCN-) was tested in aqueous solutions of sulfuric, perchloric, sulfosalicylic, citric, oxalic, maleic and aspartic acids with conductimetric detection. The effect of eluent pH, together with the concentration and characteristics of the eluting ions, were studied. Under optimum conditions (0.3 mmol dm(-3) H2SO4-0.2 mmol dm(-3) Li2SO4 eluent), the simultaneous separation of three anions (Cl-, H2PO4-, NO3-) and four cations (Na+, K+, Mg2+, Ca2+), on a PolyCAT A column (200 x 4.6 mm id, 5 microm film thickness) was achieved in 9 min.  相似文献   

6.
A new ion chromatographic (IC) technique has been developed for the determination of inorganic cations in biological fluids with direct sample injection. This involved the use of a mixed zwitterionic-micelle/electrolyte solution as an eluent. The proteins in the sample became bound to the zwitterionic micelles in the eluent and were thus eliminated from the column. The cations were separated by cation exchange. This method is ideal for the online, simultaneous determination of common inorganic cations (Na+, NH4+, K+, Mg2+, and Ca2+) in urine and serum samples. Such an application was demonstrated experimentally. Non-suppressed conductivity was used for analyte detection. The detection limits obtained using this IC system were 2.94, 5.22, 34.9, 32.6, and 56.7 microg/L for Na+, NH4+, K+, Mg2+, and Ca2+, respectively.  相似文献   

7.
Xu J  Chen Z  Yu JC  Tan C 《Journal of chromatography. A》2002,942(1-2):289-294
Co-electroosmotic capillary zone electrophoresis (CZE) with direct UV detection was developed for simultaneous determination of inorganic anions, carboxylic and aromatic carboxylic acids. These solutes were separated using a 30 mM phosphate buffer containing 1.0 mM tetradecyltrimethylammonium bromide (TTAB) and 20% (v/v) acetonitrile at pH of 6.5 and directly detected by UV at 190 nm. Calibration curves were linear in the range 0.01-2.0 mM, depending of the solutes. The detection limits ranged from 1.0 to 8.0 microM and the relative standards deviations (n=5) in range from 1.9 to 3.6% for the peak area. The proposed method was used to determine inorganic anions and carboxylic and aromatic acids in soil and plant tissue extracts.  相似文献   

8.
With a growing interest in metabolome analysis, there is a need for developing robust methods for analysis of intracellular metabolites profiles in real samples like e.g., bacteria cell. Due to their weak absorbance properties, tri- and dicarboxylic acids from TCA cycle (citric, isocitric, 2-oxoglutaric, succinic, fumaric, malic) as well as carboxylic acid metabolites from glycolysis pathway, urea cycle and metabolism of amino compounds (formic, pyruvic, lactic, acetic, glutamic) were analyzed by capillary electrophoresis (CE) with indirect UV detection. Using 4 mM 2,6-pyridinedicarboxylic acid as a highly UV absorbing carrier electrolyte, 0.2 mM cetyltrimethylammonium bromide, 10% ethylene glycol and 10% acetonitrile, pH 3.5, carboxylic acids metabolites were analyzed in Bacillus subtilis cell extract from two different cultures: glucose and malate. CE with an electrokinetic injection mode achieved limits of detection in the range of 13-54 ppb (1.12-10(-7) - 5.96-10(-7) M). The reproducibility and linearity of method was investigated with RSD for migration time less than 1.3% and acceptable correlation coefficients. The optimized CE method was used to compare metabolome content of cell extract derived from two different culture media containing either glucose or malate as a carbon source. The changes in carboxylic acid metabolites profile were observed depending from used culture medium. Carboxylic acid concentrations ranged: in cell extract from malate culture from 59 to 0.5 microM for lactate and citrate, respectively, and in cell extract from glucose culture from 133 to 0.5 microM for glutamate and citrate, respectively. Appropriate concentrations of carboxylic acid in the single bacterium cell were estimated at mM and sub-mM levels.  相似文献   

9.
R. Naidu  Z. L. Chen 《Chromatographia》2001,54(7-8):495-500
Summary Indirect UV detection in capillary zone electrophoresis (CZE) is frequently used for the determination of inorganic anions and carboxylic acids. However, there are few reports on direct UV detection of these solutes in real samples. This paper describes the use of direct UV detection of inorganic anions and organic acids in environmental samples using co-electroosmotic capillary zone electrophoresis (co-CZE) at 185 nm. The best separation and detection of the solutes was achieved using a fused silica capillary with an electrolyte containing 25 mM phosphate, 0.5 mM tetradecyltrimethylammonium bromide (TTAB) and 15% acetonitrile (v/v) at pH 6.0. Four common inorganic anions (Cl, NO2 , NO3 and SO4 2−) and 11 organic acids (oxalic, formic, fumaric, tartaric, malonic, malic, citric, succinic, maleic, acetic, and lactic acid), were determined simultaneously in 15 min. Linear calibration plots for the test solutes were obtained in the range 0.02–0.5 mM with detection limits ranging from 1–9 μM depending on the analyte. The proposed method was successfully used to determine inorganic anions and carboxylic acids in soil and plant tissue extracts with direct injection of the sample.  相似文献   

10.
Perfluorinated carboxylic acids (PFCAs), amphiphiles of anthropogenic origin, are spread worldwide throughout the environment. This work deals with their zone electrophoresis (ZE) separation on a chip with coupled columns and integrated conductivity detection. Analogies with the electrophoretic behavior of PFCAs and fatty acids were employed in a search for electrolyte conditions suitable for their separation. ZE separations in the water-ethanol electrolyte systems, based on differences in the ionic mobilities of the anions of PFCAs, provided favorable resolution and detection conditions of the homologues containing up to 10 carbon atoms in the alkyl chain. Concentration limits of detection of 0.3-6.5 micromol/L were attained for PFCAs (loaded by a 900 nL volume sample injection channel of the chip) under these separation conditions. The material of which the chip was made [poly(methylmethacrylate)] restricted its use in investigations of the separations of higher PFCA homologues as it was damaged by ethanolic and/or methanolic background electrolyte solutions required in experiments with these amphiphilic compounds.  相似文献   

11.
Arai K  Mori M  Hironaga T  Itabashi H  Tanaka K 《色谱》2012,30(4):404-408
A combination of hydrophilic interaction chromatographic(HILIC) column and a weakly acidic cation-exchange resin(WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography(IC).Firstly,the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions.The columns used were SeQuant ZIC-HILIC(ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase(ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase(HILIC-10).When using tartaric acid as the eluent,the HILIC columns indicated strong retentions for anions,based on ion-pair interaction.Especially,HILIC-10 could strongly retain anions compared with ZIC-HILIC.The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I-> NO-3 > Br-> Cl-> H2PO-4.However,since HILIC-10 could not separate analyte cations,a WCX column(TSKgel Super IC-A/C) was connected after the HILIC column in series.The combination column system of HILIC and WCX columns could successfully separate ten ions(Na+,NH+4,K+,Mg2+,Ca2+,H2PO-4,Cl-,Br-,NO-3 and I-) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6.The relative standard deviations(RSDs) of analyte ions by the system were in the ranges of 0.02%-0.05% in retention times and 0.18%-5.3% in peak areas through three-time successive injections.The limits of detection at signal-to-noise ratio of 3 were 0.24-0.30 μmol/L for the cations and 0.31-1.2 μmol/L for the anions.This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.  相似文献   

12.
CE with indirect UV detection was used for the simultaneous determination of lithium, magnesium, calcium, creatinine, carnitine, and a number of amino acids in human serum. The target analytes, positively charged under acidic electrolyte conditions, were separated with positive separation voltage polarity using 10 mM 4-methylbenzylamine, 4.5 mM citric acid, 25% (v/v) methanol at pH 4.05 as background electrolyte providing optimal separation. When analyzing real samples, however, some peaks were broadened due to essentially destacking conditions. In order to maintain the separation efficiency and also enhance the detection sensitivity, transient isotachophoresis (tITP) sample stacking was applied and yielded theoretical plate numbers in the range from 160,000 (arginine) to 350,000 (creatinine). The limit of detection values with tITP preconcentration were 0.11-0.26 mg L(-1) for metal cations, 1.0 mg L(-1) for creatinine, and 1.3-3.9 mg L(-1) for histidine, lysine, arginine, and ornithine. The method precision for peak areas was from 0.4 to 5.0% relative standard deviation using the matrix sodium as internal standard. The accuracy of the developed tITP-CZE system was verified by consistent results for Li+, Mg2+, Ca2+, and creatinine obtained on analyzing two serum certified reference materials. The only sample preparation required was ultrafiltration and acidification (to release protein-bound alkaline earths), and working ranges for individual analytes corresponded well to clinical concentration ranges.  相似文献   

13.
Novel CE methods have been developed on portable instrumentation adapted to accommodate a capacitively coupled contactless conductivity detector for the separation and sensitive detection of inorganic anions and cations in post‐blast explosive residues from homemade inorganic explosive devices. The methods presented combine sensitivity and speed of analysis for the wide range of inorganic ions used in this study. Separate methods were employed for the separation of anions and cations. The anion separation method utilised a low conductivity 70 mM Tris/70 mM CHES aqueous electrolyte (pH 8.6) with a 90 cm capillary coated with hexadimethrine bromide to reverse the EOF. Fifteen anions could be baseline separated in 7 min with detection limits in the range 27–240 μg/L. A selection of ten anions deemed most important in this application could be separated in 45 s on a shorter capillary (30.6 cm) using the same electrolyte. The cation separation method was performed on a 73 cm length of fused‐silica capillary using an electrolyte system composed of 10 mM histidine and 50 mM acetic acid, at pH 4.2. The addition of the complexants, 1 mM hydroxyisobutyric acid and 0.7 mM 18‐crown‐6 ether, enhanced selectivity and allowed the separation of eleven inorganic cations in under 7 min with detection limits in the range 31–240 μg/L. The developed methods were successfully field tested on post‐blast residues obtained from the controlled detonation of homemade explosive devices. Results were verified using ion chromatographic analyses of the same samples.  相似文献   

14.
Kubán P  Kubán P  Kubán V 《Electrophoresis》2002,23(21):3725-3734
Simultaneous separation of up to 22 inorganic and organic anions, alkali, alkaline earth and transition metal cations was achieved in less than 3 min in the capillary electrophoresis system with contactless conductometric detector. The sample was injected from both capillary ends (dual opposite end injection) and anionic and cationic species were detected in the center of the separation capillary. The parameters of the separation electrolyte, such as pH, concentration of the electrolyte, concentration of complexing agents and concentration of 18-crown-6 were studied. Best results were achieved with electrolytes consisting of 8 mM L-histidine, 2.8 mM 2-hydroxyisobutyric acid, 0.32 mM 18-crown-6 at pH 4.25 or 9 mM L-histidine, 4.6 mM lactic acid, 0.38 mM 18-crown-6 at pH 4.25. Other electrolytes containing complexing agents such as malic or tartaric acid at various concentrations could also be used. The detection limits achieved for most cations and anions were 7.5 - 62 micro gL(-1) except for Ba2+ (90 micro gL(-1)), Cd 2+, Cr 3+ and F- (125 micro gL(-1)), and fumarate (250 micro gL(-1)). The repeatability of migration times and peak areas was better than 0.4% and 5.9%, respectively. The developed method was applied for analysis of real samples, such as tap, rain, drainage and surface water samples, plant exudates, plant extracts and ore leachates.  相似文献   

15.
An amperometric detector with two working electrodes both modified with polydiphenylamine-dodecyl sulfate (PDPA-DS) was successfully used for the simultaneous determination of electroinactive anions (SO42-, Cl-, NO3-) and cations (Na+, NH4+ and K+) in single-column ion-exclusion cation-exchange chromatography (IEC-CEC). The PDPA-DS chemical modified electrode (CME) was based on the incorporation of dodecyl sulfate (DS) into PDPA by electropolymerization of diphenylamine in the presence of sodium dodecyl sulfate. The electrochemical responses against the anions and cations at the PDPA-DS CME in differential pulse voltammetry were studied. A set of well-defined peaks of electroinactive anions and cations were obtained. The anions and cations were detected conveniently and reproducibly in a linear concentration range 0.01-5.0 mmol/L and their detection limits were in the range 5-9 micromol/L at a signal-to-noise ratio of 3 (S/N = 3). The proposed method was quick, sensitive and simple and was successfully applied to the analysis of lake water samples. The working electrode was stable over one week period of operation with no evidence of chemical and mechanical deterioration.  相似文献   

16.
Capillary zone electrophoresis (CZE) with indirect UV detection was developed for the simultaneous determination of inorganic anions and organic acids in environmental samples. Various aromatic acids (benzoic, phthalic, trimellitic, and pyromellitic acids) were evaluated as background electrolytes (BGEs) to give high resolution and detection sensitivity. Co-electroosmotic conditions such as the concentration of BGE, electrolyte pH, and EOF modifier were systematically investigated. Three inorganic anions and ten organic acids were determined simultaneously in 10 min using an electrolyte containing 10 mM phthalic acid, 0.5 mM myristyltrimethylammonium bromide (MTAB), and 5% methanol (MeOH) (v/v) at pH 5.60. Linear plots for the test solutes were obtained in the concentration range 0.01–1.0 mM with detection limits in the range 5–30 μM. The proposed method was successfully demonstrated for the determination of inorganic anions and organic acids in natural water, soil, and plant extracts after direct sample injection.  相似文献   

17.
It was found that common cations (Na+, NH4+, K+, Mg2+ and Ca2+) could be strongly retained on an ODS stationary phase when aqueous solutions of carboxylic acids were used as eluents. The chromatographic conditions used in this work were the same as in common cation-exchange chromatography on a cation-exchange resin and the retention behavior of the above-mentioned cations on the ODS column was quite similar to that on a cation-exchange column. The retention behavior and mechanism have been investigated using a number of carboxylic acids as eluents. The retention mechanism of the cations in these experiments was considered to be a dynamic coating ion-exchange mechanism. The carboxylic acids in the mobile phase were coated onto the surface of the ODS stationary phase and formed a dynamic carboxylic acid functional layer which could act like the functional group layer of a carboxylic group cation exchanger.  相似文献   

18.
A new capillary electrophoretic (CE) method was developed for the selective and sensitive determination of common metal ions. The proposed method is based on conventional CE separation of metal cations followed by complete complexation of separated analytes with 1,10-phenanthroline using the zone-passing technique. This approach combines both partial and complete complexation modes and, thus, enables rapid, selective, efficient separation together with sensitive direct UV detection of metal species. The optimal conditions for the separation and derivatization reaction were established by varying type of electrolyte, electrolyte pH, introduction time and concentration of 1,10-phenanthroline. The optimized separations were carried out in 50 mmol l(-1) glycolic acid electrolyte (pH 6.0 with imidazole) using direct UV detection at 254 nm. Five common metal cations (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) were separated in less than 4 min. The proposed system was applied to the determination of Fe(II) and Zn(II) in snow samples. The recovery tests established for snow samples were within the range 100+/-12%.  相似文献   

19.
An ion chromatographic (IC) method with suppressed conductivity detection (CD) was developed and validated for the quantitative determination of several low-molecular-mass aliphatic mono- and dicarboxylic acids as their carboxylate anions together with some inorganic anions (chloride, sulfate, and thiosulfate) from kraft black liquors. To confirm the identification of some carboxylate anions which lack commercial model substances, a qualitative IC method with suppressed electrospray ionization mass spectrometry (ESI-MS) was also developed. The separations were performed on an IonPac AS 11-HC anion-exchange column operated at 25 degrees C within 25 min by a gradient elution with aqueous potassium hydroxide (suppressed CD in the AutoRegen mode) or sodium hydroxide (suppressed ESI-MS in the pressurized bottle mode). In the validation process a mixture of carboxylic acids and inorganic anions in aqueous media and in seven different types of wood and non-wood black liquor samples were quantitatively analyzed by IC-CD. As a result, calibration lines with correlation coefficients of 1.00 for all analytes were achieved at a concentration range from 0.05 to 105 mg L(-1). In black liquor samples intra-day (n=6) precision values ranged from 0.9 to 5%. Day-to-day (n1=3) and intermediate precision values were less than 5% for all other compounds except sulfate and thiosulfate. The variability in the thiosulfate and sulfate results is due in large part to the oxidation of sulfide and thiosulfate, respectively. Recoveries were close to 100% with standard deviations less than 8%. Depending of the analyte, the limits of detection and quantification were, respectively, between 1 and 8 microg L(-1) and between 3 and 27 microg L(-1) for standard compounds in aqueous media and between 6 and 106 microg L(-1) and between 14 and 148 microg L(-1) for black liquor samples. These validation results clearly indicated that with respect to selectivity, linearity, limits of detection and quantification, precision, and accuracy, the IC-CD method showed good applicability in the determinations described above.  相似文献   

20.
许群  张文  彭惠琪  魏青  金利通 《分析化学》2000,10(3):278-282
采用单柱离子色谱系统和电导检测的方法,首次以DL-苹果酸-甲醇水溶液为淋洗液,简便、有效地同时分离、检测了溶液SO^-24、Cl^-、NO^-3、F^-、Na^+、NH^+4、K^+、Mg^2+、Ca^2+9种离子。研究了DL-苹果酸浓度、甲醇浓度、流速和温度对各离子保留时间的影响。方法用于上海部分地区降水中的阴、阳离子分析,并与其它方法对比,结果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号