首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A portable infrared spectral radiance measurement apparatus without the cooling based on Pb Se detectors is designed to measure the spectral radiance of the object in the wavelength range from 2.1 to 4.1 μm. Cores Luxell 256 module is applied which integrates 256 pixel line array Pb Se detectors, amplifiers, analog-to-digital convertors, and Universal Serial Bus output interface. Electric aperture is applied to eliminate the effect of temperature drift. Wavelength and response function of the apparatus is calibrated with the blackbody.Results show that the wavelength resolution is 10 nm. The relative error of measured spectral radiance is below 2.3%.  相似文献   

2.
We introduce the first domestic in-situ multi-information measurement system for a gallium nitride (GaN) photo- cathode. This system can successfully fulfill heat cleaning and activation for GaN in an ultrahigh vacuum environment and produce a GaN photocathode with a negative electron affinity (NEA) status. Information including the heat clean- ing temperature, vacuum degree, photocurrent, electric current of cesium source, oxygen source, and the most important information about the spectral response, or equivalently, the quantum efficiency (QE) can be obtained during prepa- ration. The preparation of a GaN photocathode with this system indicates that the optimal heating temperature in a vacuum is about 700 C. We also develop a method of quickly evaluating the atomically clean surface with the vacuum degree versus wavelength curve to prevent possible secondary contamination when the atomic level cleaning surface is tested with X-ray photoelectron spectroscopy. The photocurrent shows a quick enhancement when the current ratio between the cesium source and oxygen source is 1.025. The spectral response of the GaN photocathode is flat in a wavelength range from 240 nm to 365 nm, and an abrupt decline is observed at 365 nm, which demonstrates that with the in-situ multi-information measurement system the NEA GaN photocathode can be successfully prepared.  相似文献   

3.
The spectral radiation characteristic of a non-luminous flame is analyzed. The apparatus and the calibration procedure based on infrared emission spectrometry for measurements of the flame are introduced.The influence of background radiation and stray light on the measurement results could be reduced and suppressed by the design of thermolator and digital lock-in technique. A blackbody cavity was used as reference emission source to calibrate the system that completed absolute measurement. The spectral measurement range is 1-20 μm. The least measuring distance and the lowest power detected at the entrance pupil are 550 mm and 10-9 W/cm2, respectively. The experimental results show that the measure error is less than 10%.  相似文献   

4.
The time characteristics of fluorescent screen is one of the important parameters to evaluate the performance of image intensifier. At present, there is no measurement method for the afterglow time of nanosecond fluorescent screen of low-level-light image intensifier. Based on the traditional test scheme of image intensifier afterglow time, a afterglow time test system for nanosecond fluorescent screen was developed. This system used a high-speed signal generator with the sampling rate of 250 MHz to complete the excitation of the laser diode light pulse, and a photomultiplier tube was used with the descending time of 0.57 ns to complete the photoelectric conversion of the fluorescent screen light signal. The weak photocurrent signal of μA magnitude was amplified and converted to a single-terminal differential circuit to complete the AD conversion in AD9684. Then the digital luminance information of the fluorescent screen was stored in the double data rate SDRAM (DDR) unit after field programmable gate array (FPGA), and the host computer sent instructions to read the DDR memory. The USB3.0 high-speed transmission protocol was used to transmit data to the host computer. In the data processing, the Kalman filtering and fast finding falling edge algorithm were used to realize the accurate measurement of noise filtering from collected data and afterglow time. The test results show that the proposed afterglow time test system for nanosecond fluorescent screen can effectively test the image intensifier with ultrafast optical characteristics. The afterglow test results of P47 phosphor reaches 118.094 4 ns, and the repeatability reaches 2.08%. © 2022 Editorial office of Journal of Applied Optics. All rights reserved.  相似文献   

5.
A novel broadband transmission method to determine polymer film thickness during manufacturing is proposed, and a measurement system is developed based on this method. The relationship between broadband optical power and film thickness is deduced according to the Lambert-Beer law. The system is composed of a halogen light and an optical power meter. Results show that the measurement error of this method is approximately 1 μm, and the resolution of the system is below 0.4 μm for polymer films with less than 100-μm thickness.  相似文献   

6.
We introduce the first domestic in-situ multi-information measurement system for a gallium nitride (GaN) photocathode. This system can successfully fulfill heat cleaning and activation for GaN in an ultrahigh vacuum environment and produce a GaN photocathode with a negative electron affinity (NEA) status. Information including the heat cleaning temperature, vacuum degree, photocurrent, electric current of cesium source, oxygen source, and the most important information about the spectral response, or equivalently, the quantum efficiency (QE) can be obtained during preparation. The preparation of a GaN photocathode with this system indicates that the optimal heating temperature in a vacuum is about 700 ℃. We also develop a method of quickly evaluating the atomically clean surface with the vacuum degree versus wavelength curve to prevent possible secondary contamination when the atomic level cleaning surface is tested with X-ray photoelectron spectroscopy. The photocurrent shows a quick enhancement when the current ratio between the cesium source and oxygen source is 1.025. The spectral response of the GaN photocathode is flat in a wavelength range from 240 nm to 365 nm, and an abrupt decline is observed at 365 nm, which demonstrates that with the it in-situ multi-information measurement system the NEA GaN photocathode can be successfully prepared.  相似文献   

7.
Based on structured-light vision measurement technology, we study a measuring method for microdiameter. The measurement principle and mathematical model are described. A novel grayscale barycenter extraction algorithm along the radial direction is proposed, which can precisely gather the image coor- dinates of the ellipse-shaped light-stripe centers. The accuracy of the measurement result shows marked improvement by using the algorithm. The method executes circle fitting to the measured three-dimensional (3D) data using linear least square method, which can acquire the diameter, surface profile, and other information of the object effectively. On the scene, a line-structured light vision system using the presented method is applied to measure the curvature radius of metal blades. Experimental results show that the measurement precision of the system is higher than 2 μm.  相似文献   

8.
A novel optical excitation and detection apparatus was used to investigate the characteristics of silicon micro-resonators, which was activated into vibration by a laser beam irradiation. The beam diameter of the excitation light was less than 10 μm. The vibration amplitude of the resonator was detected by the interferometer with high resolution of 0.1 nm and measurement repeatability of less than 3 nm. The resonant frequency of the micro-resonator was obtained to be 8.75 kHz with full-width at half-maximum (FWHM) of 0.18 kHz. It is shown that the method is useful and reliable for measuring micro-displacement and micro-vibration of minute objects with nanometer accuracy.  相似文献   

9.
A novel optical excitation and detection apparatus was used to investigate the characteristics of silicon micro-resonators, which was activated into vibration by a laser beam irradiation. The beam diameter of the excitation light was less than 10 μm. The vibration amplitude of the resonator was detected by the interferometer with high resolution of 0.1 nm and measurement repeatability of less than 3 nm. The resonant frequency of the micro-resonator was obtained to be 8.75 kHz with full-width at half-maximum (FWHM) of 0.18 kHz. It is shown that the method is useful and reliable for measuring micro-displacement and micro-vibration of minute objects with nanometer accuracy.  相似文献   

10.
Based on structured-light vision measurement technology,we study a measuring method for microdiameter.The measurement principle and mathematical model are described.A novel grayscale barycenter extraction algorithm along the radial direction is proposed,which can precisely gather the image coordinates of the ellipse-shaped light-stripe centers.The accuracy of the measurement result shows marked improvement by using the algorithm.The method executes circle fitting to the measured three-dimensional(3D) data using linear least square method,which can acquire the diameter,surface profile,and other information of the object effectively.On the scene,a line-structured light vision system using the presented method is applied to measure the curvature radius of metal blades.Experimental results show that the measurement precision of the system is higher than 2 μm.  相似文献   

11.
为实现目标光谱辐射亮度的高精度测量,研制了一种小视场近紫外到近红外光谱辐射计,光谱范围为300 nm~2 000 nm,光谱辐射亮度测量范围为50μW/cm2·nm·sr~1 000μW/cm2·nm·sr。阐述了近紫外到近红外光谱辐射计设计原理及关键部件,使用基于钨带灯的直接定标法实现了光谱辐射计光谱辐射亮度绝对定标,测量了标准积分球光源的光谱辐射亮度,测量值与积分球光源标准值偏差优于0.5%。  相似文献   

12.
LED外场辐射定标积分球光源基于辐射通量等效理论,用于星载微光遥感器的在轨辐射定标。该定标光源采用12组峰值波长670 nm的LED密集阵列发光单元,每组最大电功率300 W,辐亮度输出达到5.2×10?2 W·cm?2·sr?1,通过等效辐射通量面积校正后,能够适用于10?9 W·cm?2·sr?1量级的微光通道在轨定标。光源的参数检测结果表明:定标光源角度均匀性在±30°以内优于99.6%,平面均匀性优于99.7%,1 h内稳定性优于99.9%,具有优良的辐射特性。在敦煌中国遥感卫星辐射校正场对VIIRS微光通道进行了在轨实测试验,在轨响应结果为8.27×10?9 W·cm?2·sr?1(含月光贡献和大气影响),证明了该外场微光定标光源辐射量值设计的合理性。  相似文献   

13.
在已有的紫外、可见和近红外波段的光谱辐射亮度国家基准的基础上,将光谱辐射亮度的测量范围向红外波段扩展,建立2 μm~14 μm红外光谱辐射亮度计量基准装置,可为遥感对地观测、气候变化、目标识别、材料发射率测量等领域的红外光谱辐射定标提供技术支撑。针对红外光谱辐射亮度测量中的温度均匀性和源尺寸效应进行研究,通过定制光阑或限制所用腔口位置实现了温度均匀性的提升;采用光学仿真、增加光阑和简化光路等方法进行了系统源尺寸效应的分析和抑制,有效地降低了源尺寸效应的不确定度。下一步将对系统的非线性效应等参数进行研究,并对整套系统的不确定度进行评估。  相似文献   

14.
刘涛  邱亚峰 《应用光学》2015,36(5):723-727
针对辐射增益是紫外像增强器的主要性能参数,决定着紫外像增强器的综合性能,提出一种用于测试紫外像增强器辐射增益的测试仪,测试波长范围为200 nm~400 nm,亮度测量视场角可选(1/8)、(1/4)、(1/2)、1、2、3。通过改变微通道板电压、阴极电压和荧光屏电压等参数,完成对紫外像增强器的辐射增益测试,测试结果表明:测试曲线变化趋势和紫外像增强器的工作特性相吻合,入射紫外辐射强度调节范围为10-11W/cm2~10-7W/cm2,辐射计最低探测强度可达10-11W/cm2,最低亮度探测阈值可达310-4cd/m2,辐射增益测试重复性优于8%。  相似文献   

15.
通过研制真空多光路切换组件,结合Y型真空比较通道、探测器真空舱,在保证超高真空环境的前提下,实现激光、紫外连续可调单色光以及真空紫外单色光3个光路的快速切换,从而以低温辐射计为基准,以紫外增强硅陷阱探测器为传递标准,实现波长115 nm~400 nm紫外探测器绝对光谱响应度的测量,实验验证绝对光谱响应度测量不确定度在115 nm~230 nm可达到0.8%~1.5%(k=2),在230 nm~400 nm可达到0.5%~1.0%(k=2)。  相似文献   

16.
应对气候变化预测与灾害天气防范等科学难题,空间观测领域提出高精度的光谱辐射度定标需求。阵列式光谱辐射计存在内部结构缺陷和光学元器件不理想等问题,导致杂散辐射,严重影响光谱辐射度测量结果的准确性。测量多种典型阵列式光谱辐射计的杂散辐射特性,考虑外场目标光源与实验室定标光源不一致对杂散辐射修正的影响,分别基于带通滤光片和可调谐激光器研究紫外杂散辐射修正方法。首先,利用不同光谱透过率的带通滤光片,测量可见及红外光谱辐射引起的紫外杂散信号。针对杂散辐射分布特点,建立数学修正模型,实现高效快捷的杂散辐射修正。地基验证场的光谱辐射亮度测量结果修正后,紫外杂散辐射信号显著降低。对于连续分布的宽谱段光源,带通滤光片修正法具有实验简便易行、测试过程高效等优点。然而,实现非连续分布或窄带光源的高精度杂散辐射修正存在困难。为此,建立基于可调谐激光器的杂散辐射测量系统,解决了各个像素点杂散辐射线扩展函数的测量难题。改变可调谐激光器的输出波长,精细化测量各个像素点的杂散辐射线扩展函数,再推导出杂散辐射信号分布函数,通过MATLAB软件将矩阵反演运算,得到各像素点的杂散辐射修正结果,实现杂散辐射的高精度修正。利用不同类型的阵列式光谱辐射计验证了该修正方法,对于非连续分布的窄带光源,测量结果修正后杂散辐射信号降低了一个数量级,并且谱线两边的杂散宽峰显著消除,大幅降低了紫外波段的测量偏差。针对不同光谱分布的光源,建立了两种优势互补的杂散辐射修正方法,有效改善了阵列式光谱辐射计的紫外测量结果偏差,进一步确保我国地球观测数据的准确性和国际等效互认。  相似文献   

17.
大气边界层白天温度测量用转动拉曼激光雷达   总被引:2,自引:1,他引:1  
刘君  华灯鑫  李言 《光学学报》2007,27(5):55-759
设计了一个转动拉曼激光雷达系统,对大气边界层温度进行全天候高精度测量。系统选用波长355 nm的紫外激光作光源,采用高光谱分辨力光栅,将雷达接收到的散射信号以及太阳背景光从空间上分离,配合边缘反射镜,反射转动拉曼信号,去除大部分米氏-瑞利散射和太阳背景光噪声信号,并用两个窄带干涉滤光片,分离中心波长为353.9 nm和353.1 nm转动拉曼散射信号,同时对噪声信号进行2次高精度剔除,以保证白天测量的需要。对系统进行了分析及数值计算,结果表明在激光脉冲能量300 mJ,望远镜有效口径25 cm,测量时间10 min的条件下,可以在白天太阳背景光辐射度为3×108W/(m2.sr.nm)的边界层内测量高度2.5 km以下的大气温度分布,并在大气散射比低于2.5的条件下,温度测量精度可达到1 K。  相似文献   

18.
星载太阳紫外光谱监视器的地面辐射定标   总被引:3,自引:2,他引:1  
王淑荣  宋克非  李福田 《光学学报》2007,27(12):2256-2261
星载太阳紫外光谱监视器是一种小型化、高精度紫外-真空紫外光谱辐射计,它有两种工作模式,即探测太阳紫外光谱辐照度的太阳模式和探测大气的太阳后向散射紫外光谱辐亮度的大气模式。对应这两种工作模式分别建立了紫外-真空紫外光谱辐照度和紫外光谱辐亮度定标装置。光谱辐照度标准灯直接辐照仪器的漫反射板进行仪器的光谱辐照度响应度定标,光谱辐照度标准灯辐照标准漫反射板形成朗伯面光源进行仪器的光谱辐亮度响应度定标。误差分析表明:160~250 nm光谱辐照度绝对定标误差为6.5%,250~400 nm为4.3%;250~400 nm光谱辐亮度绝对定标误差为5.9%。星载太阳紫外光谱监视器获得的地外太阳紫外光谱辐照度与大气的太阳后向散射光谱辐亮度数据,同国际上的观测结果相比一致性达±10%。  相似文献   

19.
We demonstrate diode laser modules with high spectral radiance larger than 1 GW/cm2/sr/nm in the visible spectral range. These highly brilliant laser light sources enable the development of next-generation 3D displays. About 1W output power from small-sized modules was achieved at 635 nm by direct diode laser emission and at 530 nm using single pass second harmonic generation (SHG) of a highly brilliant near-infrared laser diode.  相似文献   

20.
微通道板光子计数成像探测器预处理实验研究   总被引:4,自引:2,他引:2  
微通道板光子计数成像探测器是嫦娥三号极紫外相机的关键成像器件,嫦娥三号极紫外相机被用于探测地球等离子层中极微弱的He+共振散射辐射,为了消除微通道板内部吸附的残余气体产生的离子反馈等背景噪音对探测器微弱信号成像性能的影响,需要对微通道板进行预处理.预处理包括高温真空烘烤和紫外光电子清刷.根据预处理的实验要求,设计了一套微通道板预处理装置,为微通道板预处理实验提供高真空环境和高温加热及保温功能.本文详细介绍了微通道板预处理实验的实现过程,对三片Z型级联的微通道板进行预处理实验后,背景噪音由27.09counts/s·cm2降低为0.53counts/s·cm2、空间分辨率达到125μm,上述实验结果表明MCP在预处理之后其表面、亚表面和体内吸附的杂质气体得以有效去除,获得了稳定的增益,成像性能也得以改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号