首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ground-state rotational spectra of nine isotopomers of a complex formed between 2,5-dihydrofuran and ethyne were recorded with a pulsed-jet, Fourier-transform microwave spectrometer. Rotational and centrifugal distortion constants were obtained for C4H6O...HCCH, C4H6O...DCCH, C4H6O...HCCD, C4H6O...DCCD, [3,4-D2]-C4H6O...HCCH, C4H6O...H13CCH, C4H6O...HC13CH, , and [3(13C]-C4H6O...HCCH. The substituted species were studied in their natural abundances. For the more abundant isotopomers, weak c-type transitions as well as strong a-type transitions were observed. The primary intermolecular binding was shown to consist of a hydrogen bond formed by the ethyne subunit acting as the proton donor and the O atom of 2,5-dihydrofuran as the proton acceptor. The complex has a plane of symmetry that includes the O atom and the ethyne subunit, with a pyramidal configuration at oxygen. A fit of the principal moments of inertia of all nine isotopomers under the assumption of unperturbed 2,5-dihydrofuran and ethyne geometries yielded the values r(O...H)=2.127(8) A, phi=57.8(18) degrees , and theta=16.2(32) degrees, where phi is the angle made by the HCCH subunit at O and theta is the angular deviation of the O...H-C nuclei from collinearity. This geometry is compared with those obtained by ab initio calculations conducted with a range of basis sets and with electron correlation taken into account at the MP2 (M?ller-Plesset second order) level of theory. A small inversion doubling (approximately equal to 20-30 kHz) of c-type transitions, well resolved only for the parent isotopomer and [3HCCH, was attributed to a vibrational motion that inverts the configuration at oxygen. A one-dimensional model for this motion was used with a double minimum potential energy function of the type V(phi)=alphaphi(4)+betaphi(2) to estimate the observed separation DeltaE(01) of the lowest pair (v=0 and v=1) of associated energy levels. The predicted DeltaE(01) had the same magnitude as that deduced from the inversion doubling of the c-type transitions. The geometry of C4H6O...HCCH is compared with those other B...HCCH, where B is vinyl fluoride, oxirane, and thiirane. A rationalization of the angular geometries of various B...HX, where X=F, Cl, Br, or CCH, is presented.  相似文献   

2.
A synthesis of new boron containingMannich bases of salicylamide by reaction of salicylamide, formaldehyde and boron-heterocycles is reported.
VIII. Mitteilung:Stump, R. K., Zimmerman jr., H. K., Schleppnik, A. A., Gutsche, C. D., Liebigs Ann. Chem.667, 18 (1963).  相似文献   

3.
Guided by ab initio calculations, Fourier transform microwave spectra in the 6-21 GHz region are obtained for seven isotopomers of the complex formed between 1-chloro-1-fluoroethylene and acetylene. These include the four possible combinations of (35)Cl- and (37)Cl-containing CH(2)CClF with the most abundant acetylene isotopic modification, HCCH, and its H(13)C(13)CH analogue, as well as three singly substituted deuterated isotopomers. Analysis of the spectra determines the rotational constants and additionally, the complete chlorine quadrupole hyperfine coupling tensors in both the inertial and principal electric field gradient axis systems, and where appropriate, the diagonal components of the deuterium quadrupole coupling tensors. The inertial information contained in the rotational constants provides the structure for CH(2)CClF-HCCH: a primary, hydrogen bonding interaction existing between the HCCH donor and the F atom acceptor on the 1-chloro-1-fluoroethylene moiety, while a secondary interaction occurs between the acetylenic bond on the HCCH molecule and the H atom cis to the hydrogen-bonded F atom on the substituted ethylene, which causes the hydrogen bond to deviate from linearity. This is similar to the structure obtained for 1,1-difluoroethylene-HCCH [H. O. Leung and M. D. Marshall, J. Chem. Phys. 126, 154301 (2006)], and indeed, to within experimental uncertainty, the intermolecular interactions in CH(2)CClF-HCCH and its 1,1-difluoroethylene counterpart are practically indistinguishable, even though ab initio calculations at the MP2∕6-311G++(2d, 2p) level suggest that the former complex is more strongly bound.  相似文献   

4.
Contrary to the early literature [Dornow, A.; Wiehler, G. Justus Liebigs Ann. Chem. 1952, 578, 113–121], esters of 2,4-dinitro-3-arylglutaric acids 2 could not be obtained by double condensation of aryl aldehydes with alkyl nitroacetates. Instead, under these conditions, we observed formation of novel 4-aryl-5-hydroxy-1,2-oxazin-6-one-3-carboxylates 1. The roles of the solvent, the reaction conditions, and the nature of the reagents in this new condensation were investigated. The data obtained suggest that the heterocyclic products 1 originate from intramolecular oxidation (similar to the Nef reaction) of dinitro derivative 2, followed by nucleophilic attack of the oxime oxygen at the carboxylate group. The condensation presented provides a novel general synthetic route to these types of heterocycle.  相似文献   

5.
Thymine glycol (Tg), 5,6-dihydroxy-5,6-dihydrothymine, is formed in DNA by the reaction of thymine with reactive oxygen species. The 5R Tg lesion was incorporated site-specifically into 5'-d(G(1)T(2)G(3)C(4)G(5)Tg(6)G(7)T(8)T(9)T(10)G(11)T(12))-3'; Tg = 5R Tg. The Tg-modified oligodeoxynucleotide was annealed with either 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)A(19)C(20)G(21)C(22)A(23)C(24))-3', forming the Tg(6) x A(19) base pair, corresponding to the oxidative damage of thymine in DNA, or 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)G(19)C(20)G(21)C(22)A(23)C(24))-3', forming the mismatched Tg(6) x G(19) base pair, corresponding to the formation of Tg following oxidative damage and deamination of 5-methylcytosine in DNA. At 30 degrees C, the equilibrium ratio of cis-5R,6S:trans-5R,6R epimers was 7:3 for the duplex containing the Tg(6) x A (19) base pair. In contrast, for the duplex containing the Tg(6) x G(19) base pair, the cis-5R,6S:trans-5R,6R equilibrium favored the cis-5R,6S epimer; the level of the trans-5R,6R epimer remained below the level of detection by NMR. The data suggested that Tg disrupted hydrogen bonding interactions, either when placed opposite to A(19) or G(19). Thermodynamic measurements indicated a 13 degrees C reduction of T(m) regardless of whether Tg was placed opposite dG or dA in the complementary strand. Although both pairings increased the free energy of melting by 3 kcal/mol, the melting of the Tg x G pair was more enthalpically favored than was the melting of the Tg x A pair. The observation that the position of the equilibrium between the cis-5R,6S and trans-5R,6R thymine glycol epimers in duplex DNA was affected by the identity of the complementary base extends upon observations that this equilibrium modulates the base excision repair of Tg [Ocampo-Hafalla, M. T.; Altamirano, A.; Basu, A. K.; Chan, M. K.; Ocampo, J. E.; Cummings, A., Jr.; Boorstein, R. J.; Cunningham, R. P.; Teebor, G. W. DNA Repair (Amst) 2006, 5, 444-454].  相似文献   

6.
李文佐  黄明宝 《化学学报》2004,62(9):883-887,M004
用B3LYP方法及6-311G(d,p)和6-311 G(d,p)基组,对十二种氟代苯阳离子做了理论研究,优化了它们的电子基态的结构,计算了对应分子的垂直电离势(VIP)和绝热电离势(AIP).依据Jahn.Teller理论,计算确定了1,3,5-C6H3F^ 3和C6F^ 6离子分别具有C2v(2↑B)和D2h(2↑B2g)结构(对应分子分别为D3h和D6h结构).其余十个离子的构型的对称点群与对应分子相同,但构型参数值有明显差别.自然布居分析计算表明这些离子的正电荷主要分布在与F原子相连的C原子和各H原子上.B3LYP/6-311 G(d,p)级别上计算的各氟代苯分子的VIP和AIP值和实验值符合得很好.  相似文献   

7.
The microwave spectra of four isotopologues of the CHBrF(2)···HCCH weakly bound dimer have been measured in the 6-18 GHz region using chirped-pulse and Balle-Flygare Fourier-transform microwave spectroscopy. Spectra of (13)CH(79)BrF(2) and (13)CH(81)BrF(2) monomers have also been measured, and spectroscopic constants are reported. Measurement of spectra for the (79)Br and (81)Br isotopologues of CHBrF(2) complexed with both (12)C(2)H(2) and (13)C(2)H(2) have allowed the determination of a structure with C(s) symmetry for this complex. CHBrF(2) interacts with the triple bond of acetylene via a C-H···π contact (R(H···π) = 2.670(8) ?) with the Br atom lying in the ab plane, located 3.293(40) ? from a hydrogen atom of the HCCH molecule. The structure of CHBrF(2)···HCCH has been compared with recently studied related acetylene complexes, including a comparison with (and further structural analysis of) the CHClF(2)···HCCH complex.  相似文献   

8.
The reactions of the CH radical with several alkanes were studied, at room temperature, in a low-pressure fast-flow reactor. CH(X2Pi, v = 0) radicals were obtained from the reaction of CHBr(3) with potassium atoms. The overall rate constants at 300 K are (0.76 +/- 0.20) x 10(-10) [Fleurat-Lessard, P.; Rayez, J. C.; Bergeat, A.; Loison, J. C. Chem. Phys. 2002, 279, 87],1 (1.60 +/- 0.60) x 10(-10)[Galland, N.; Caralp, F.; Hannachi, Y.; Bergeat, A.; Loison, J.-C. J. Phys. Chem. A 2003, 107, 5419],2 (2.20 +/- 0.80) x 10(-10), (2.80 +/- 0.80) x 10(-10), (3.20 +/- 0.80) x 10(-10), (3.30 +/- 0.60) x 10(-10), and (3.60 +/- 0.80) x 10(-10) cm3 molecule(-1) s(-1), (errors refer to +/-2sigma) for methane, ethane, propane, n-butane, n-pentane, neo-pentane, and n-hexane respectively. The experimental overall rate constants correspond to those obtained using a simple classical capture theory. Absolute atomic hydrogen production was determined by V.U.V. resonance fluorescence, with H production from the CH + CH4 reaction being used as a reference. Observed H branching ratios were for CH4, 1.00[Fleurat-Lessard, P.; Rayez, J. C.; Bergeat, A.; Loison, J. C. Chem. Phys. 2002, 279, 87];1 C(2)H(6), 0.22 +/- 0.08 [Galland, N.; Caralp, F.; Hannachi, Y.; Bergeat, A.; Loison, J.-C. J. Phys. Chem. A 2003, 107, 5419];2 C(3)H(8), 0.19 +/- 0.07; C(4)H(10) (n-butane), 0.14 +/- 0.06; C(5)H(12) (n-pentane), 0.52 +/- 0.08; C(5)H(12) (neo-pentane), 0.51 +/- 0.08; C(5)H(12) (iso-pentane), 0.12 +/- 0.06; C(6)H(14) (n-hexane), 0.06 +/- 0.04.  相似文献   

9.
Michael addition of trans-4-hydroxynonenal (HNE) to deoxyguanosine yields diastereomeric 1,N(2)-dG adducts in DNA. When placed opposite dC in the 5'-CpG-3' sequence, the (6S,8R,11S) diastereomer forms a N(2)-dG:N(2)-dG interstrand cross-link [Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc.2003, 125, 5687-5700]. We refined its structure in 5'-d(G(1)C(2)T(3)A(4)G(5)C(6)X(7)A(8)G(9)T(10)C(11)C(12))-3'·5'-d(G(13)G(14)A(15)C(16)T(17)C(18)Y(19)C(20)T(21)A(22)G(23)C(24))-3' [X(7) is the dG adjacent to the C6 carbon of the cross-link or the α-carbon of the (6S,8R,11S) 1,N(2)-dG adduct, and Y(19) is the dG adjacent to the C8 carbon of the cross-link or the γ-carbon of the HNE-derived (6S,8R,11S) 1,N(2)-dG adduct; the cross-link is in the 5'-CpG-3' sequence]. Introduction of (13)C at the C8 carbon of the cross-link revealed one (13)C8→H8 correlation, indicating that the cross-link existed predominantly as a carbinolamine linkage. The H8 proton exhibited NOEs to Y(19) H1', C(20) H1', and C(20) H4', orienting it toward the complementary strand, consistent with the (6S,8R,11S) configuration. An NOE was also observed between the HNE H11 proton and Y(19) H1', orienting the former toward the complementary strand. Imine and pyrimidopurinone linkages were excluded by observation of the Y(19)N(2)H and X(7) N1H protons, respectively. A strong H8→H11 NOE and no (3)J((13)C→H) coupling for the (13)C8-O-C11-H11 eliminated the tetrahydrofuran species derived from the (6S,8R,11S) 1,N(2)-dG adduct. The (6S,8R,11S) carbinolamine linkage and the HNE side chain were located in the minor groove. The X(7)N(2) and Y(19)N(2) atoms were in the gauche conformation with respect to the linkage, maintaining Watson-Crick hydrogen bonds at the cross-linked base pairs. A solvated molecular dynamics simulation indicated that the anti conformation of the hydroxyl group with respect to C6 of the tether minimized steric interaction and predicted hydrogen bonds involving O8H with C(20)O(2) of the 5'-neighbor base pair G(5)·C(20) and O11H with C(18)O(2) of X(7)·C(18). These may, in part, explain the stability of this cross-link and the stereochemical preference for the (6S,8R,11S) configuration.  相似文献   

10.
The O-H bond dissociation enthalpies (BDEs) of 13 oximes, RR'C=NOH, having R and/or R' = H, alkyl, and aryl are reported. Experimental anchor points used to validate the results of theoretical calculations include (1) the O-H BDEs of (t-Bu)2C=NOH, t-Bu(i-Pr)C=NOH, and t-Bu(1-Ad)C=NOH determined earlier from the heat released in the reaction of (t-Bu)2C=NO* with (PhNH)2 in benzene and EPR spectroscopy (Mahoney, L. R.; Mendenhall, G. D.; Ingold, K. U. J. Am. Chem. Soc. 1973, 95, 8610), all of which were decreased by 1.7 kcal/mol to reflect a revision to the heat of formation of (E)-azobenzene (which has significant ramifications for other BDEs) and to correct for the heat of hydrogen bonding of (t-Bu)2C=NOH (alphaH2 = 0.43 measured in this work) to benzene, and (2) the measured rates of thermal decomposition of six RR'C=NOCH2Ph at 423 or 443 K, which were used to derive O-H BDEs for the corresponding RR'C=NOH. Claims (Bordwell, F. G.; Ji, G. Z. J. Org. Chem. 1992, 57, 3019; Bordwell, F. G.; Zhang, S. J. Am. Chem. Soc. 1995, 117, 4858; and Bordwell, F. G.; Liu, W.-Z. J. Am. Chem. Soc. 1996, 118, 10819) that the O-H BDEs in mono- and diaryloximes are significantly lower than those for alkyloximes due to delocalization of the unpaired electron into the aromatic ring have always been inconsistent with the known structures of iminoxyl radicals as are the purported perpendicular structures, i.e., phi(Calpha-C=N-O*) = 90 degrees, for sterically hindered dialkyl iminoxyl radicals. The present results confirm the 1973 conclusion that simple steric effects, not electron delocalization or dramatic geometric changes, are responsible for the rather small differences in oxime O-H BDEs.  相似文献   

11.
Ab initio calculations of portions of the C2H5O potential energy surface critical to the title reaction are presented. These calculations are based on QCISD geometries and frequencies and RQCISD(T) energies extrapolated to the complete-basis-set limit. Rate coefficients for the reaction of C2H4 with OH are calculated using this surface and the two transition-state model of Greenwald and co-workers [J. Phys. Chem. A 2005, 109, 6031] for the association of OH with C2H4. The present calculations reproduce most of the experimental data, including the temperature and pressure dependence of the rate coefficients, with only a small (0.4 kcal/mol) adjustment to the energy barrier for direct hydrogen abstraction. We confirm the importance of this channel above 800 K and find that a significant fraction of the total rate coefficient (approximately 10%) is due to the formation of vinyl alcohol above this temperature. Calculations of the vinyl alcohol channel are consistent with the recent observation of this molecule in low-pressure flames [Taatjes, C. A.; Hansen, N.; McIlroy, A.; Miller, J. A.; Senosiain, J. P.; Klippenstein, S. J.; Qi, F.; Sheng, L.; Zhang, Y.; Cool, T. A.; Wang, J.; Westmoreland, P. R.; Law, M. E.; Kasper, T.; Kohse-H?inghaus, K. Science 2005, 308, 1887] and suggest that this reaction should be included in hydrocarbon oxidation mechanisms.  相似文献   

12.
Benzene hydroxylation is a fundamental process in chemical catalysis. In nature, this reaction is catalyzed by the enzyme cytochrome P450 via oxygen transfer in a still debated mechanism of considerable complexity. The paper uses hybrid density functional calculations to elucidate the mechanisms by which benzene is converted to phenol, benzene oxide, and ketone, by the active species of the enzyme, the high-valent iron-oxo porphyrin species. The effects of the protein polarity and hydrogen-bonding donation to the active species are mimicked, as before (Ogliaro, F.; Cohen, S.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 12892-12893). It is verified that the reaction does not proceed either by hydrogen abstraction or by initial electron transfer (Ortiz de Montellano, P. R. In Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; Chapter 8, pp 245-303). In accord with the latest experimental conclusions, the theoretical calculations show that the reactivity is an interplay of electrophilic and radicalar pathways, which involve an initial attack on the pi-system of the benzene to produce sigma-complexes (Korzekwa, K. R.; Swinney, D. C.; Trager, W. T. Biochemistry 1989, 28, 9019-9027). The dominant reaction channel is electrophilic and proceeds via the cationic sigma-complex,( 2)3, that involves an internal ion pair made from a cationic benzene moiety and an anionic iron porphyrin. The minor channel proceeds by intermediacy of the radical sigma-complex, (2)2, in which the benzene moiety is radicalar and the iron-porphyrin moiety is neutral. Ring closure in these intermediates produces the benzene oxide product ((2)4), which does not rearrange to phenol ((2)7) or cyclohexenone ((2)6). While such a rearrangement can occur post-enzymatically under physiological conditions by acid catalysis, the computations reveal a novel mechanism whereby the active species of the enzyme catalyzes directly the production of phenol and cyclohexenone. This enzymatic mechanism involves proton shuttles mediated by the porphyrin ring through the N-protonated intermediate, (2)5, which relays the proton either to the oxygen atom to form phenol ((2)7) or to the ortho-carbon atom to produce cyclohexenone product ((2)6). The formation of the phenol via this proton-shuttle mechanism will be competitive with the nonenzymatic conversion of benzene oxide to phenol by external acid catalysis. With the assumption that (2)5 is not fully thermalized, this novel mechanism would account also for the observation that there is a partial skeletal retention of the original hydrogen of the activated C-H bond, due to migration of the hydrogen from the site of hydroxylation to the adjacent carbon (so-called "NIH shift" (Jerina, D. M.; Daly, J. W. Science 1974, 185, 573-582)). Thus, in general, the computationally discovered mechanism of a porphyrin proton shuttle suggests thatthere is an enzymatic pathway that converts benzene directly to a phenol and ketone, in addition to nonenzymatic production of these species by conversion of arene oxide to phenol and ketone. The potential generality of protonated porphyrin intermediates in P450 chemistry is discussed in the light of the H/D exchange observed during some olefin epoxidation reactions (Groves, J. T.; Avaria-Neisser, G. E.; Fish, K. M.; Imachi, M.; Kuczkowski, R. J. Am. Chem. Soc. 1986, 108, 3837-3838) and the general observation of heme alkylation products (Kunze, K. L.; Mangold, B. L. K.; Wheeler, C.; Beilan, H. S.; Ortiz de Montellano, P. R. J. Biol. Chem. 1983, 258, 4202-4207). The competition, similarities, and differences between benzene oxidation viz. olefin epoxidation and alkanyl C-H hydroxylation are discussed, and comparison is made with relevant experimental and computational data. The dominance of low-spin reactivity in benzene hydroxylation viz. two-state reactivity (Shaik, S.; de Visser, S. P.; Ogliaro, F.; Schwarz, H.; Schr?der, D. Curr. Opin. Chem. Biol. 2002, 6, 556-567) in olefin epoxidation and alkane hydroxylation is traced to the loss of benzene resonance energy during the bond activation step.  相似文献   

13.
Protonated benzene cluster ions, H(C(6)H(6))(2)(+) and H(C(6)H(6))(3)(+), are produced in a pulsed electrical discharge source coupled to a supersonic expansion. Mass-selected complexes are investigated with infrared photodissociation spectroscopy in the 1000-3200 cm(-1) region using the method of argon tagging. The IR spectra of H(C(6)H(6))(2)(+)-Ar and H(C(6)H(6))(3)(+)-Ar contain broad bands in the high frequency region resulting from CH-π hydrogen bonds. Sharp peaks are observed in the fingerprint region arising from the ring modes of both the C(6)H(7)(+) and C(6)H(6) moieties. M06-2X calculations have been performed to investigate the structures and vibrational spectra of energetically low-lying configurations of these complexes. H(C(6)H(6))(2)(+) is predicted to have three nearly isoenergetic conformers: the parallel displaced (PD), T-shaped (TS), and canted (C) structures [Jaeger, H. M.; Schaefer, H. F.; Hohenstein, E. G.; Sherrill, C. D. Comput. Theor. Chem. 2011, 973, 47-52]. A comparison of the experimental dimer spectrum with those predicted for the three isomers suggests an average structure between the TS and PD conformers, which is consistent with the low energy barrier predicted to separate these two structures. No evidence is found for the C dimer even though it lies only 1.2 kcal/mol above the PD dimer. Although the trimer is also computed to have many low lying isomers, the IR spectrum limits the possible species present.  相似文献   

14.
Molecular dynamics (MD) simulations have been performed to investigate the structure and dynamics of an energetic ionic liquid, 1-hydroxyethyl-4-amino-1,2,4-triazolium nitrate (HEATN). The generalized amber force field (GAFF) was used, and an electronically polarizable model was further developed in the spirit of our previous work (Yan, T.; Burnham, C. J.; Del Popolo, M. G.; Voth, G. A. J. Phys. Chem. B 2004, 108, 11877). In the process of simulated annealing from a liquid state at 475 K down to a glassy state at 175 K, the MD simulations identify a glass-transition temperature region at around 250-275 K, in agreement with experiment. The self-intermediate scattering functions show vanishing boson peaks in the supercooled region, indicating that HEATN may be a fragile glass former. The coupling/decoupling of translational and reorientational ion motion is also discussed, and various other physical properties of the liquid state are intensively studied at 400 K. A complex hydrogen bond network was revealed with the calculation of partial radial distribution functions. When compared to the similarly sized 1-ethyl-4-methyl-1,4-imidazolium nitrate ionic liquid, EMIM+/NO3-, a hydrogen bond network directly resulting in the poorer packing efficiency of ions is observed, which is responsible for the lower melting/glass-transition point. The structural properties of the liquid/vacuum interface shows that there is vanishing layering at the interface, in accordance with the poor ion packing. The effects of electronic polarization on the self-diffusion, viscosity, and surface tension of HEATN are found to be significant, in agreement with an earlier study on EMIM+/NO3- (Yan, T.; Burnham, C. J.; Del Popolo, M. G.; Voth, G. A. J. Phys. Chem. B 2004, 108, 11877).  相似文献   

15.
Ion mobility measurements and molecular dynamics simulations were performed for unsolvated A4G7A4 + H+ and Ac-A4G7A4 + H+ (Ac = acetyl, A = alanine, G = glycine) peptides. As expected, A4G7A4 + H+ adopts a globular conformation (a compact, random-looking, three-dimensional structure) over the entire temperature range examined (100-410 K). Ac-A4G7A4 + H+ on the other hand is designed to have a flat energy landscape with a marginally stable helical state. This peptide shows at least four different conformations at low temperatures (<230 K). The two conformations with the largest cross sections are attributed to - and partial -helices, while the one with the smallest cross section is globular. The other main conformation may be partially helical. Ac-A4G7A4 + H+ becomes predominantly globular at intermediate temperatures and then becomes more helical as the temperature is raised further. This unexpected behavior may be due to the helix having a higher vibrational entropy than the globular state, as predicted by some recent calculations (Ma, B.; Tsai, C.-J.; Nussinov, R. Biophys. J. 2000, 79, 2739-2753).  相似文献   

16.
A mixture of the four stereoisomers of 2.6-dimethyloctyl formate was synthesized, and found to be a potent mimic of (4R,8R)-4,8-dimethyldecanal, the aggregation pheromone of the flour beetles,Tribolium castaneum andTribolium confusum. For Part CVI, see Mori K and Puapoomchareon P 1988Liebigs Ann. Chem. 175  相似文献   

17.
The rotational spectra for five isotopomers of the 1:1 weakly bound complex formed between dimethyl ether (DME) and acetylene (HCCH) have been measured by Fourier transform microwave spectroscopy. The experimental rotational constants, planar moments, and dipole moment components are consistent with a floppy complex possessing an effective C2v structure in which the hydrogen atom of acetylene is hydrogen bonded to the oxygen atom of dimethyl ether with an intermolecular H...O separation of 2.08(3) A. Experimental rotational constants for the normal isotopic species are A = 10382.5(17) MHz, B = 1535.7187(18) MHz, and C = 1328.3990(17) MHz and the dipole moment components are mua= mutotal = 1.91(10) D. Ab initio calculations at the MP2/6-311++G(2d,2p) level indicate that the energy barrier for motion of the HCCH subunit between the lone pairs of the DME, via a C2v intermediate structure, is very low (approximately 0.29 kJ mol(-1)). Inclusion of basis set superposition error and zero point energy corrections to the energies of four stationary points located on the potential energy surface shows that the relative stabilities are particularly sensitive to these corrections. The ab initio optimizations give rotational constants for the C2v structure of A = 10066 MHz, B = 1496 MHz, and C = 1324 MHz, and a dipole moment of mua= mu(total) = 2.12 D, in reasonable agreement with the experimentally determined values. The structural parameters and energetics of the DME-HCCH complex will be discussed and compared to similar complexes such as H2O-HCCH.  相似文献   

18.
Results of (10,9)CASSCF/6-31G* and B3LYP/6-31G* level calculations on the potential surface for the electrocyclic ring closure of E-7-azahepta-1,2,4,6-tetraene 3 to 1-aza-6-methylidenecyclohexa-2,4-diene ( 4) are reported, as well as parallel calculations on the electrocyclizations of hepta-1,2,4,6-tetraene 5, hexa-1,3,5-triene 7, Z and E-1-aza-1,3,5-hexatrienes 9 and 10, and Z-7-azahepta-1,2,4,6-tetraene 12 for purposes of careful comparison. The 3 --> 4 rearrangement has been studied computationally with density functional theory (DFT) by others, leading to disagreement over whether it is pseudopericyclic (de Lera, A. R.; Alvarez, R.; Lecea, B.; Torrado, A.; Cossío, F. P. Angew. Chem., Int. Ed. 2001, 40, 557-561; de Lera, A. R.; Cossío, F. P. Angew. Chem., Int. Ed. 2002, 41, 1150-1152) or pericyclic (Rodríguez-Otero, J.; Cabaleiro-Lago, E. Angew. Chem., Int. Ed. 2002, 41, 1147-1150). In accordance with disrotatory motion, the normal mode vectors for TS 3-->4 calculated at the (10,9)CASSCF/6-31G* level show a greater magnitude of rotation of the N1-H group relative to the N1-C2 bond being formed than in TS 3-->4 calculated at the B3LYP/6-31G* level. Furthermore, comparison of orbital correlation diagrams constructed entirely from localized complete active space (CAS) molecular orbitals (MOs) for the electrocyclizations of 3, 5, 7, 9, and 10 suggest that it is the highest occupied delocalized pi-MO of 3 that is primarily responsible for sigma-bond formation in 4, not the terminal allenyl pi-bond MO. However, there does appear to be a special secondary orbital effect role for the nitrogen lone-pair and hence the process is likely neither purely pericyclic nor pseudopericyclic.  相似文献   

19.
Ab initio CCSD and CCSD(T) calculations with the 6-311+G(2d,2p) and the 6-311++G(3df,3pd) basis sets were carried out to characterize the vinyl cyanide (C(3)H(3)N) dissociation channels leading to hydrogen cyanide (HCN) and its isomer hydrogen isocyanide (HNC). Our computations predict three elimination channels giving rise to HCN and another four channels leading to HNC formation. The relative HCN/HNC branching ratios as a function of internal energy of vinyl cyanide were computed using RRKM theory and the kinetic Monte Carlo method. At low internal energies (120 kcal/mol), the total HCN/HNC ratio is about 14, but at 148 kcal/mol (193 nm) this ratio becomes 1.9, in contrast with the value 124 obtained in a previous ab initio/RRKM study at 193 nm (Derecskei-Kovacs, A.; North, S. W. J. Chem. Phys.1999, 110, 2862). Moreover, our theoretical results predict a ratio of rovibrationally excited acetylene over total acetylene of 3.3, in perfect agreement with very recent experimental measurements (Wilhelm, M. J.; Nikow, M.; Letendre, L.; Dai, H.-L. J. Chem. Phys.2009, 130, 044307).  相似文献   

20.
It is shown by use of [2-14C]betaine that the formation of phenylmethylethers from phenoles and betaine takes place by methyl-group transfer from the trimethylammoniumgroup of the betaine. The formation of the by-products phenoxy acetic acid, trimethylamine and carbon dioxide is discussed.
III.G. Kollenz, Liebigs Ann. Chem.1978, 1666.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号