首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Let E a real reflexive Banach space which admits a weakly sequentially continuous duality mapping from E to E, and K be a closed convex subset of E which is also a sunny nonexpansive retract of E, and be nonexpansive mappings satisfying the weakly inward condition and F(T)≠∅, and be a fixed contractive mapping. The implicit iterative sequence {xt} is defined by for t∈(0,1)
xt=P(tf(xt)+(1−t)Txt).  相似文献   

2.
A non-linear structure preserving matrix method for the computation of a structured low rank approximation of the Sylvester resultant matrix S(f,g) of two inexact polynomials f=f(y) and g=g(y) is considered in this paper. It is shown that considerably improved results are obtained when f(y) and g(y) are processed prior to the computation of , and that these preprocessing operations introduce two parameters. These parameters can either be held constant during the computation of , which leads to a linear structure preserving matrix method, or they can be incremented during the computation of , which leads to a non-linear structure preserving matrix method. It is shown that the non-linear method yields a better structured low rank approximation of S(f,g) and that the assignment of f(y) and g(y) is important because may be a good structured low rank approximation of S(f,g), but may be a poor structured low rank approximation of S(g,f) because its numerical rank is not defined. Examples that illustrate the differences between the linear and non-linear structure preserving matrix methods, and the importance of the assignment of f(y) and g(y), are shown.  相似文献   

3.
Positive periodic solutions of functional differential equations   总被引:1,自引:0,他引:1  
We consider the existence, multiplicity and nonexistence of positive ω-periodic solutions for the periodic equation x′(t)=a(t)g(x)x(t)−λb(t)f(x(tτ(t))), where are ω-periodic, , , f,gC([0,∞),[0,∞)), and f(u)>0 for u>0, g(x) is bounded, τ(t) is a continuous ω-periodic function. Define , , i0=number of zeros in the set and i=number of infinities in the set . We show that the equation has i0 or i positive ω-periodic solution(s) for sufficiently large or small λ>0, respectively.  相似文献   

4.
In this paper we study the large time behavior of the (minimal) heat kernel kPM(x,y,t) of a general time-independent parabolic operator Lu=ut+P(x,x)u which is defined on a noncompact manifold M. More precisely, we prove that
  相似文献   

5.
We mainly study polynomial differential systems of the form dx/dt=P(x,y), dy/dt=Q(x,y), where P and Q are complex polynomials in the dependent complex variables x and y, and the independent variable t is either real or complex. We assume that the polynomials P and Q are relatively prime and that the differential system has a Darboux first integral of the form
  相似文献   

6.
Let u(t,x) be the solution of the heat equation (∂tx)u(t,x)=0 on subject to u(0,x)=f(x) on Rn. The main goal of this paper is to characterize such a nonnegative measure μ on that f(x)?u(t2,x) induces a bounded embedding from the Sobolev space , p∈[1,n) into the Lebesgue space , q∈(0,∞).  相似文献   

7.
Let be a contractive gauge function in the sense that φ is continuous, φ(s)<s for s>0, and if f:M→M satisfies d(f(x),f(y))?φ(d(x,y)) for all x,y in a complete metric space (M,d), then f always has a unique fixed point. It is proved that if T:M→M satisfies
  相似文献   

8.
9.
Let F=F(t,x) be a bounded, Hausdorff continuous multifunction with compact, totally disconnected values. Given any y0F(t0,x0), we show that the differential inclusion has a globally defined classical solution, with x(t0)=x0, .  相似文献   

10.
On h-convexity     
We introduce a class of h-convex functions which generalize convex, s-convex, Godunova-Levin functions and P-functions. Namely, the h-convex function is defined as a non-negative function which satisfies f(αx+(1−α)y)?h(α)f(x)+h(1−α)f(y), where h is a non-negative function, α∈(0,1) and x,yJ. Some properties of h-convex functions are discussed. Also, the Schur-type inequality is given.  相似文献   

11.
The classical criterion of asymptotic stability of the zero solution of equations x=f(t,x) is that there exists a function V(t,x), a(‖x‖)?V(t,x)?b(‖x‖) for some a,bK, such that for some cK. In this paper we prove that if f(t,x) is bounded, is uniformly continuous and bounded, then the condition that can be weakened and replaced by and contains no complete trajectory of , t∈[−T,T], where , uniformly for (t,x)∈[−T,TBH.  相似文献   

12.
13.
Let f(x)∈Z[x]. Set f0(x)=x and, for n?1, define fn(x)=f(fn−1(x)). We describe several infinite families of polynomials for which the infinite product
  相似文献   

14.
Let C be the collection of continuous self-maps of the unit interval I=[0,1] to itself. For fC and xI, let ω(x,f) be the ω-limit set of f generated by x, and following Block and Coppel, we take Q(x,f) to be the intersection of all the asymptotically stable sets of f containing ω(x,f). We show that Q(x,f) tells us quite a bit about the stability of ω(x,f) subject to perturbations of either x or f, or both. For example, a chain recurrent point y is contained in Q(x,f) if and only if there are arbitrarily small perturbations of f to a new function g that give us y as a point of ω(x,g). We also study the structure of the map Q taking (x,f)∈I×C to Q(x,f). We prove that Q is upper semicontinuous and a Baire 1 function, hence continuous on a residual subset of I×C. We also consider the map given by x?Q(x,f), and find that this map is continuous if and only if it is a constant map; that is, only when the set is a singleton.  相似文献   

15.
In this paper, we study the existence of periodic solutions of the second order differential equations x+f(x)x+g(x)=e(t). Using continuation lemma, we obtain the existence of periodic solutions provided that F(x) () is sublinear when x tends to positive infinity and g(x) satisfies a new condition
where M, d are two positive constants.  相似文献   

16.
17.
In this paper we establish existence-uniqueness of solution of a class of singular boundary value problem −(p(x)y(x))=q(x)f(x,y) for 0<x?b and y(0)=a, α1y(b)+β1y(b)=γ1, where p(x) satisfies (i) p(x)>0 in (0,b), (ii) p(x)∈C1(0,r), and for some r>b, (iii) is analytic in and q(x) satisfies (i) q(x)>0 in (0,b), (ii) q(x)∈L1(0,b) and for some r>b, (iii) is analytic in with quite general conditions on f(x,y). Region for multiple solutions have also been determined.  相似文献   

18.

Text

We prove that for any real polynomial f(x)∈R[x] the set
  相似文献   

19.
20.
Under suitable conditions on f(t,y(t+θ)), the boundary value problem of higher-order functional differential equation (FDE) of the form
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号