首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to suggest branch and bound schemes, based on a relaxation of the objective function, to solve nonconvex quadratic programs over a compact polyhedral feasible region. The various schemes are based on different d.c. decomposition methods applied to the quadratic objective function. To improve the tightness of the relaxations, we also suggest solving the relaxed problems with an algorithm based on the so called “optimal level solutions” parametrical approach. *This paper has been partially supported by M.I.U.R. and C.N.R.  相似文献   

2.
提出了一类求解带有箱约束的非凸二次规划的新型分支定界算法.首先,把原问题目标函数进行D.C.分解(分解为两个凸函数之差),利用次梯度方法,求出其线性下界逼近函数的一个最优值,也即原问题的一个下界.然后,利用全局椭球算法获得原问题的一个上界,并根据分支定界方法把原问题的求解转化为一系列子问题的求解.最后,理论上证明了算法的收敛性,数值算例表明算法是有效可行的.  相似文献   

3.
本文给出了最大割问题的二次规划算法。这种算法通过求解最大割问题的二次规划松弛给出了一种较好的界,然后用分支定界法得到了最大割问题的解。数值结果表明这种算法是非常有效的。  相似文献   

4.
In this paper we present a new branch and bound algorithm for solving a class of integer quadratic knapsack problems. A previously published algorithm solves the continuous variable subproblems in the branch and bound tree by performing a binary search over the breakpoints of a piecewise linear equation resulting from the Kuhn-Tucker conditions. Here, we first present modifications to a projection method for solving the continuous subproblems. Then we implement the modified projection method in a branch and bound framework and report computational results indicating that the new branch and bound algorithm is superior to the earlier method.  相似文献   

5.
Linearly constrained indefinite quadratic problems play an important role in global optimization. In this paper we study d.c. theory and its local approachto such problems. The new algorithm, CDA, efficiently produces local optima and sometimes produces global optima. We also propose a decomposition branch andbound method for globally solving these problems. Finally many numericalsimulations are reported.  相似文献   

6.
Multidimensional scaling is a technique for exploratory analysis of multidimensional data. The essential part of the technique is minimization of a multimodal function with unfavorable properties like invariants and non-differentiability. Recently a branch and bound algorithm for multidimensional scaling with city-block distances has been proposed for solution of medium-size problems exactly. The algorithm exploits piecewise quadratic structure of the objective function. In this paper a parallel version of the branch and bound algorithm for multidimensional scaling with city-block distances has been proposed and investigated. Parallel computing enabled solution of larger problems what was not feasible with the sequential version.  相似文献   

7.
In this paper we propose a new branch and bound algorithm using a rectangular partition and ellipsoidal technique for minimizing a nonconvex quadratic function with box constraints. The bounding procedures are investigated by d.c. (difference of convex functions) optimization algorithms, called DCA. This is based upon the fact that the application of the DCA to the problems of minimizing a quadratic form over an ellipsoid and/or over a box is efficient. Some details of computational aspects of the algorithm are reported. Finally, numerical experiments on a lot of test problems showing the efficiency of our algorithm are presented.  相似文献   

8.
We examine a branch and bound algorithm for solving nonlinear (convex) integer programming problems. In this note we generalize previous results for the quadratic case. The variables are branched in such a way that the number of branch and bound nodes checked in the process is small. Numerical results confirm the efficiency.  相似文献   

9.
Lower Bound Improvement and Forcing Rule for Quadratic Binary Programming   总被引:1,自引:0,他引:1  
In this paper several equivalent formulations for the quadratic binary programming problem are presented. Based on these formulations we describe four different kinds of strategies for estimating lower bounds of the objective function, which can be integrated into a branch and bound algorithm for solving the quadratic binary programming problem. We also give a theoretical explanation for forcing rules used to branch the variables efficiently, and explore several properties related to obtained subproblems. From the viewpoint of the number of subproblems solved, new strategies for estimating lower bounds are better than those used before. A variant of a depth-first branch and bound algorithm is described and its numerical performance is presented.  相似文献   

10.
We develop an algorithm that is based on the linearization and decomposition of a general Quadratic Assignment Problem of size n into n2 Linear Assignment Problems of size (n − 1). The solutions to these subproblems are used to calculate a lower bound for the original problem, and this bound is then used in an exact branch and bound procedure. These subproblems are similar to the ‘minors’ defined by Lawler [16], but permit us to calculate tighter bounds. Computational experience is given for solution to optimality of general quadratic assignment problems is sizes up to n = 10.  相似文献   

11.
This paper presents a general decomposition method to compute bounds for constrained 0-1 quadratic programming. The best decomposition is found by using a Lagrangian decomposition of the problem. Moreover, in its simplest version this method is proved to give at least the bound obtained by the LP-relaxation of a non-trivial linearization. To illustrate this point, some computational results are given for the 0-1 quadratic knapsack problem.  相似文献   

12.
针对界约束二次规划的分枝定界法中出现的紧、松弛策略,结合聚类分析方法,给出了新的剖分边的选取原则,把球约束二次规划作为子问题,使得原问题整体最优值的上、下界能较快的达到.  相似文献   

13.
We develop convergent decomposition branch and bound algorithms for solving a class of bilinear programming problems. As an application of the proposed method, we apply it to quadratic programs with a few negative eigenvalues, and to a class of mixed integer programming problems.This paper was completed during the stay of the first author at LMI-INSA Rouen, CNRS URA 1378, France.  相似文献   

14.
本文提出了一种求解带二次约束和线性约束的二次规划的分支定界算法.在算法中,我们运用Lipschitz条件来确定目标函数和约束函数的在每个n矩形上的上下界,对于n矩形的分割,我们采用选择n矩形最长边的二分法,同时我们采用了一些矩形删除技术,在不大幅增加计算量的前提下,起到了加速算法收敛的效果.从理论上我们证明了算法的收敛性,同时数值实验表明该算法是有效的.  相似文献   

15.
Preconditioning by a conjugate projector is combined with the recently proposed modified proportioning with reduced gradient projection (MPRGP) algorithm for the solution of bound‐constrained quadratic programming problems. If applied to the partially bound‐constrained problems, such as those arising from the application of FETI‐based domain decomposition methods to the discretized elliptic boundary variational inequalities, the resulting algorithm is shown to have better bound on the rate of convergence than the original MPRGP algorithm. The performance of the algorithm is illustrated on the solution of a model boundary variational inequality. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A two level global optimization algorithm for multidimensional scaling (MDS) with city-block metric is proposed. The piecewise quadratic structure of the objective function is employed. At the upper level a combinatorial global optimization problem is solved by means of branch and bound method, where an objective function is defined as the minimum of a quadratic programming problem. The later is solved at the lower level by a standard quadratic programming algorithm. The proposed algorithm has been applied for auxiliary and practical problems whose global optimization counterpart was of dimensionality up to 24.  相似文献   

17.
边界约束非凸二次规划问题的分枝定界方法   总被引:2,自引:0,他引:2  
本文是研究带有边界约束非凸二次规划问题,我们把球约束二次规划问题和线性约束凸二次规划问题作为子问题,分明引用了它们的一个求整体最优解的有效算法,我们提出几种定界的紧、松驰策略,给出了求解原问题整体最优解的分枝定界算法,并证明了该算法的收敛性,不同的定界组合就可以产生不同的分枝定界算法,最后我们简单讨论了一般有界凸域上非凸二次规划问题求整体最优解的分枝与定界思想。  相似文献   

18.
We propose in this paper a general D.C. decomposition scheme for constructing SDP relaxation formulations for a class of nonconvex quadratic programs with a nonconvex quadratic objective function and convex quadratic constraints. More specifically, we use rank-one matrices and constraint matrices to decompose the indefinite quadratic objective into a D.C. form and underestimate the concave terms in the D.C. decomposition formulation in order to get a convex relaxation of the original problem. We show that the best D.C. decomposition can be identified by solving an SDP problem. By suitably choosing the rank-one matrices and the linear underestimation, we are able to construct convex relaxations that dominate Shor’s SDP relaxation and the strengthened SDP relaxation. We then propose an extension of the D.C. decomposition to generate an SDP bound that is tighter than the SDP+RLT bound when additional box constraints are present. We demonstrate via computational results that the optimal D.C. decomposition schemes can generate both tight SDP bounds and feasible solutions with good approximation ratio for nonconvex quadratically constrained quadratic problems.  相似文献   

19.
关于二次规划问题分段线性同伦算法的改进   总被引:1,自引:0,他引:1  
本文利用Cholesky分解,Gauss消去等技术和定义适当的同伦映射,将关于二次规划问题的分段线性同伦算法加以改进,改进后的算法,对于严格凸二次规划来说,计算效率与Goldfarb-Idnani的对偶法相当。  相似文献   

20.
《Optimization》2012,61(5):627-641
We study lower bounding methods for indefinite integer quadratic programming problems. We first construct convex relaxations by D.C. (difference of convex functions) decomposition and linear underestimation. Lagrangian bounds are then derived by applying dual decomposition schemes to separable relaxations. Relationships between the convex relaxation and Lagrangian dual are established. Finally, we prove that the lower bound provided by the convex relaxation coincides with the Lagrangian bound of the orthogonally transformed problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号