首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Luminescent quantum dots (QDs) are colloidal semiconductor nanocrystals consisting of an inorganic core covered by a molecular layer of organic surfactants. Although QDs have been known for more than thirty years, they are still attracting the interest of researchers because of their unique size-tunable optical and electrical properties arising from quantum confinement. Moreover, the controlled decoration of the QD surface with suitable molecular species enables the rational design of inorganic-organic multicomponent architectures that can show a vast array of functionalities. This minireview highlights the recent progress in the use of surface-modified QDs – in particular, those based on cadmium chalcogenides – as supramolecular platforms for light-related applications such as optical sensing, triplet photosensitization, photocatalysis and phototherapy.  相似文献   

2.
Complex structures from nanoparticles are found in rocks, soils, and sea sediments but the mechanisms of their formation are poorly understood, which causes controversial conclusions about their genesis. Here we show that graphene quantum dots (GQDs) can assemble into complex structures driven by coordination interactions with metal ions commonly present in environment and serve a special role in Earth's history, such as Fe3+ and Al3+. GQDs self‐assemble into mesoscale chains, sheets, supraparticles, nanoshells, and nanostars. Specific assembly patterns are determined by the effective symmetry of the GQDs when forming the coordination assemblies with the metal ions. As such, maximization of the electronic delocalization of π‐orbitals of GQDs with Fe3+ leads to GQD‐Fe‐GQD units with D2 symmetry, dipolar bonding potential, and linear assemblies. Taking advantage of high electron microscopy contrast of carbonaceous nanostructures in respect to ceramic background, the mineralogical counterparts of GQD assemblies are found in mineraloid shungite. These findings provide insight into nanoparticle dynamics during the rock formation that can lead to mineralized structures of unexpectedly high complexity.  相似文献   

3.
4.
High-photoluminescence (PL) graphene quantum dots (GQDs) were synthesized by a simple one-pot hydrothermal process, then separated by dialysis bags of different molecular weights. Four separated GQDs of varying sizes were obtained and displayed different PL intensities. With the decreasing size of separated GQDs, the intensity of the emission peak becomes much stronger. Finally, the GQDs of the smallest size revealed the most energetic PL intensity in four separated GQDs. The PL energy of all the separated GQDs shifted slightly, supported by density functional theory calculations.  相似文献   

5.
Graphene quantum dots (GQDs) have attracted considerable interest due to their unique physicochemical properties and various applications. For the first time it is shown that GQDs surface‐functionalized with hydrocarbon chains (i.e., amphiphilic GQDs) self‐assemble into unilamellar spherical vesicles in aqueous solution. The amphiphilic GQD vesicles exhibit multicolor luminescence that can be readily exploited for membrane studies by fluorescence spectroscopy and microscopy. The GQD vesicles were used for microscopic analysis of membrane interactions and disruption by the peptide beta‐amyloid.  相似文献   

6.
《化学:亚洲杂志》2017,12(18):2343-2353
Graphene oxide and graphene quantum dots are attractive fluorophores that are inexpensive, nontoxic, photostable, water‐soluble, biocompatible, and environmentally friendly. They find extensive applications in fluorescent biosensors and chemosensors, in which they serve as either fluorophores or quenchers. As fluorophores, they display tunable photoluminescence emission and the “giant red‐edge effect”. As quenchers, they exhibit a remarkable quenching efficiency through either electron transfer or Förster resonance energy transfer (FRET) process. In this review, the origin of fluorescence and the mechanism of excitation wavelength‐dependent fluorescence of graphene oxide and graphene quantum dots are discussed. Sensor design strategies based on graphene oxide and graphene quantum dots are presented. The applications of these sensors in health care, the environment, agriculture, and food safety are highlighted.  相似文献   

7.
Chemical modification of graphene quantum dots (GQDs) can influence their physical and chemical properties; hence, the investigation of the effect of organic functional groups on GQDs is of importance for developing GQD–organic hybrid materials. Three peripherally functionalised GQDs having a third‐generation dendritic wedge (GQD‐ 2 ), long alkyl chains (GQD‐ 3 ) and a polyhedral oligomeric silsesquioxane group (GQD‐ 4 ) were prepared by the CuI‐catalysed Huisgen cycloaddition reaction of GQD‐ 1 with organic azides. Cyclic voltammetry indicated that reduction occurred on the surfaces of GQD‐ 1 – 4 and on the five‐membered imide rings at the periphery, and this suggested that the functional groups distort the periphery by steric interactions between neighbouring functional groups. The HOMO–LUMO bandgaps of GQD‐ 1 – 4 were estimated to be approximately 2 eV, and their low‐lying LUMO levels (<?3.9 eV) were lower than that of phenyl‐C61‐butyric acid methyl ester, an n‐type organic semiconductor. The solubility of GQD‐ 1 – 4 in organic solvents depends on the functional groups present. The functional groups likely cover the surfaces and periphery of the GQDs, and thus increase their affinity for solvent and avoid precipitation. Similar to GQD‐ 2 , both GQD‐ 3 and GQD‐ 4 emitted white light upon excitation at 360 nm. Size‐exclusion chromatography demonstrated that white‐light emission originates from the coexistence of differently sized GQDs that have different photoluminescence emission wavelengths.  相似文献   

8.
9.
A novel material for the electrochemical determination of endocrine disruptors using a composite based on graphene oxide modified with cadmium telluride quantum dots has been evaluated. The morphology, structure and electrochemical performance of the composite electrodes were characterised by transmission electron microscopy, dynamic light scattering, UV‐visible absorption spectra, fluorescence spectra, Raman spectra and cyclic voltammetry. The dynamic light scattering, transmission electronic microscopy and spectrophotometric measurements all showed good distribution of the quantum dots with a small particle size. The electrochemical measurements demonstrated the high performance of the composite response in the presence of a light source. Differential pulse voltammetry allowed the development of a method to determine 17β‐estradiol levels in the range from 0.2 to 4.0 μmol L ?1 with a detection limit of 2.8 nmol L ?1 (0.76 μg L ?1).  相似文献   

10.
利用可见光将二氧化碳光还原为有用的化学品是一项有前景但充满挑战的工作. 金属有机骨架(MOFs)作为一种新兴的具高孔隙率、高比表面积、强吸附富集CO2能力、结构和功能可调的多孔材料, 在光催化二氧化碳还原反应中具有极强的应用潜力. 但大多数金属有机骨架材料存在可见光吸收范围窄、光生载流子快速复合等问题, 导致催化二氧化碳还原活性仍然较低. 通过静电自组装策略将纳米级胺基化金属有机骨架材料(NH2-MIL-88B(Fe))和羧酸化石墨烯量子点(GQD)通过静电作用结合, 得到GQD/NH2-MIL-88B(Fe)复合材料. 该复合催化剂有效结合了金属有机骨架强二氧化碳吸附富集能力和GQD的可见光吸收范围宽、电子传导能力强等优点, 因此与纯金属有机骨架材料NH2- MIL-88B(Fe)相比较, 该复合材料能高效光催化还原CO2为CO, 并在10 h可见光下活性高达590 μmol/g, 约为NH2-MIL-88B(Fe)活性的四倍. 这项工作为制备高活性催化CO2的金属有机骨架复合材料提供了借鉴.  相似文献   

11.
The electrophoretic deposition (EPD) of graphene-based materials on transparent substrates is highly potential for many applications. Several factors can determine the yield of the EPD process, such as applied voltage, deposition time and particularly the presence of dispersion additives (stabilisers) in the suspension solution. This study presents an additive-free EPD of graphene quantum dot (GQD) thin films on an indium tin oxide (ITO) glass substrate and studies the deposition mechanism with the variation of the applied voltage (10–50 V) and deposition time (5–25 min). It is found that due to the small size (≈3.9 nm) and high content of deprotonated carboxylic groups, the GQDs form a stable dispersion (zeta-potential of about −35 mV) without using additives. The GQD thin films can be deposited onto ITO with optimal surface morphology at 30 V in 5 min (surface roughness of approximately (3.1±1.3) nm). In addition, as-fabricated GQD thin films also possess some interesting physico-optical properties, such as a double-peak photoluminescence at about λ=417 and 439 nm, with approximately 98 % visible transmittance. This low-cost and eco-friendly GQD thin film is a promising material for various applications, for example, transparent conductors, supercapacitors and heat conductive films in smart windows.  相似文献   

12.
龚乐  杨蓉  刘瑞  陈利萍  燕映霖  冯祖飞 《化学进展》2019,31(7):1020-1030
石墨烯量子点(GQDs)作为新型碳基材料,由于其纳米级小尺寸而具有比表面积大、导电性高、透明性好、荧光性能独特等优点,是一种极具潜力的储能器件电极材料。GQDs与金属化合物、碳材料等形成具有三维空间结构的复合材料,有利于电子扩散和离子传输,大幅度改善GQDs作为电极材料的实际应用性能。异原子掺杂型GQDs可提供较多活性位点,提高活性物质利用率。本文介绍了GQDs的合成策略,主要分为自上而下和自下而上法。不同制备方法对GQDs的粒径大小、表面缺陷位点和荧光特性等的影响也不尽相同。通过阐述近几年GQDs、掺杂型GQDs及其复合物在超级电容器、锂离子电池、太阳能电池等能源器件方面的应用实例,表明具有量子限域效应和边界效应的GQDs基材料在新型储能器件中有巨大的应用潜力;通过深层剖析GQDs复合物的空间结构对储能器件电化学性能的影响,为今后深入研究奠定基础。此外,指出未来GQDs的发展方向是寻找快速、绿色环保的大批量合成方法,均匀、有效的掺杂或复合以及构建独特空间结构的电极材料,进一步提高其应用于储能器件时的电化学性能。  相似文献   

13.
Colloidal semiconductor nanocrystals, known as quantum dots (QDs), are regarded as brightly photoluminescent nanomaterials possessing outstanding photophysical properties, such as high photodurability and tunable absorption and emission wavelengths. Therefore, QDs have great potential for a wide range of applications, such as in photoluminescent materials, biosensors and photovoltaic devices. Since the development of synthetic methods for accessing high-quality QDs with uniform morphology and size, various types of QDs have been designed and synthesized, and their photophysical properties dispersed in solutions and at the single QD level have been reported in detail. In contrast to dispersed QDs, the photophysical properties of assembled QDs have not been revealed, although the structures of the self-assemblies are closely related to the device performance of the solid-state QDs. Therefore, creating and controlling the self-assembly of QDs into well-defined nanostructures is crucial but remains challenging. In this Minireview, we discuss the notable examples of assembled QDs such as dimers, trimers and extended QD assemblies achieved using organic templates. This Minireview should facilitate future advancements in materials science related to the assembled QDs.  相似文献   

14.
This minireview describes recent progress in solution‐processable graphene quantum dots (SGQDs). Advances in the preparation, modification, properties, and applications of SGQDs are highlighted in detail. As one of emerging nanostructured materials, possible ongoing research related to the precise control of the lateral size, edge structure and surface functionality; the manipulation and characterization; the relationship between the properties and structure; and interfaces with biological systems of SGQDs have been speculated upon.  相似文献   

15.
Biological imaging is an essential means of disease diagnosis. However, semiconductor quantum dots that are used in bioimaging applications comprise toxic metal elements that are nonbiodegradable, causing serious environmental problems. Herein, we developed a novel ecofriendly solvothermal method that uses ethanol as a solvent and doping with chlorine atoms to prepare highly fluorescent graphene quantum dots (GQDs) from seaweed. The GQDs doped with chlorine atoms exhibit high-intensity white fluorescence. Thus, their preliminary application in bioimaging has been confirmed. In addition, clear cell imaging could be performed at an excitation wavelength of 633 nm.  相似文献   

16.
介绍了石墨烯量子点(GQDs)在生化分析领域如生物分子检测、金属离子检测、细菌检测、细胞成像、组织成像以及活体成像等方面的最新研究动态。  相似文献   

17.
A novel approach for in situ generation of AgI quantum dots by the confinement of a pillar[5]arene‐based supramolecular polymer network has been successfully developed. The supramolecular polymer network ( SPN‐QP ) was constructed by using a bis‐8‐hydroxyquinoline‐modified pillar[5]arene derivative as a host ( H‐QP ) and a bis‐pyridinium‐modified decane as guest ( G‐PD ). The SPN‐QP shows ultrasensitive response for Ag+. The limit of detection is about 7.44×10?9 M..Interestingly, when I? was added to the SPN‐QP +Ag+ system, an unexpected strong warm‐white fluorescence emission was observed. After carefu investigation, we found that the strong warm‐white fluorescence emission could be attributed to the in situ formation of AgI quantum dots under the confinement of the supramolecular polymer network ( SPN‐QP ). Based on this approach, ultrasensitive detection of I? was realized. The limit of detection for I? is 4.40×10?9 M. This study provides a new way for the preparation of quantum dots under the confinement of supramolecular polymer network as well as ultrasensitive detection of ions by in situ formation of quantum dots.  相似文献   

18.
谢文菁  傅英懿  马红  张沫  范楼珍 《化学学报》2012,70(20):2169-2172
利用电化学方法在碱性条件下电解石墨棒, 通过常温下水合肼还原, 得到5~10 nm的荧光石墨烯量子点(Graphene Quantum Dots, GQDs). 通过透射电子显微镜(TEM)、原子力显微镜(AFM)对所制备的GQDs进行形貌表征, GQDs的粒子大小均一, 为单层石墨烯. 通过傅里叶变换红外光谱(FTIR)、荧光光谱(PL)、紫外可见吸收光谱(UV-vis)、X 射线衍射光谱(XRD)对所制备的GQDs进行性质测定, 发现GQDs可以发出黄色荧光, 量子产率为14%, 毒性低、具有良好的水溶性、荧光稳定性和生物兼容性, 可顺利进入细胞, 在肿瘤细胞的成像研究方面具有广泛的应用前景.  相似文献   

19.
以柠檬酸为原料通过脱水缩合的方法合成荧光石墨烯量子点,结合透射电镜、红外及荧光光谱仪对其结构、组成及性能进行表征,并利用过渡金属离子与石墨烯量子点之间的电子转移作用、乙二胺四乙酸与金属离子之间的络合作用使其发生荧光淬灭与恢复,实现石墨烯量子点荧光“关”与“开”的设计,并总结出过渡金属离子电子结构与荧光开关之间的作用规律。将实验教学与前沿研究紧密结合,涵盖了材料合成、表征和性能研究等3方面的内容,内容丰富、综合性强,有利于培养学生的科研素养与实验技能,并提高其分析问题、解决问题的能力。  相似文献   

20.
《化学:亚洲杂志》2017,12(9):973-977
Graphene quantum dots were covalently crosslinked forming ensembles of a few hundred nanometers in size by McMurry deoxygenation coupling reactions of peripheral carbonyl functional moieties catalyzed by TiCl4 and Zn powders in refluxing THF, as evidenced by TEM, AFM, FTIR, Raman and XPS measurements. Photoluminescence measurements showed that after chemical coupling, the excitation and emission peaks blue‐shifted somewhat and the emission intensity increased markedly, likely due to the removal of oxygenated species where quinone‐like species are known to be effective electron acceptors and emission quenchers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号