首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrogenation of crotonaldehyde in the presence of supported platinum nanoparticles was used to determine how the interaction between the metal particles and their support can control catalytic performance. Using gas‐phase catalytic reaction studies and in situ sum‐frequency generation vibrational spectroscopy (SFG) to study Pt/TiO2 and Pt/SiO2 catalysts, a unique reaction pathway was identified for Pt/TiO2, which selectively produces alcohol products. The catalytic and spectroscopic data obtained for the Pt/SiO2 catalyst shows that SiO2 has no active role in this reaction. SFG spectra obtained for the Pt/TiO2 catalyst indicate the presence of a crotyl‐oxy surface intermediate. By adsorption through the aldehyde oxygen atom to an O‐vacancy site on the TiO2 surface, the C?O bond of crotonaldehyde is activated, by charge transfer, for hydrogenation. This intermediate reacts with spillover H provided by the Pt to produce crotyl alcohol.  相似文献   

2.
半导体多相光催化法作为一种污染治理新技术越来越受到人们的重视,在所使用的半导体光催化剂中,TiO2以无毒,催化活性高,价廉,无污染等特点,成为最具有前途的绿色环保型催化剂之一[1],但其自身具有局限性,如禁带宽度大,需在近紫外光下才能激发产生电子空穴对,对太阳光的利用率仅  相似文献   

3.
Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions, and their high catalytic activity can be fully recovered by high‐temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.  相似文献   

4.
Titanium silicalite (TS) and TiO2 nanocomposites were prepared by mixing TS and TiO2 with different ratios in ethanol. They were impregnated with 15 wt% Co loading to afford Co‐based catalysts. Fischer–Tropsch synthesis (FTS) performance of these TS–TiO2 nanocomposite‐supported Co‐based catalysts was studied in a fixed‐bed tubular reactor. The results reveal that the Co/TS–TiO2 catalysts have better catalytic performance than Co/TS or Co/TiO2 each with a single support, showing the synergistic effect of the binary TS–TiO2 support. Among the TS–TiO2 nanocomposite‐supported Co‐based catalysts, Co/TS–TiO2‐1 presents the highest activity. These catalysts were characterized using N2 adsorption–desorption measurements, X‐ray diffraction, X‐ray photoelectron spectroscopy, H2 temperature‐programmed reduction, H2 temperature‐programmed desorption and transmission electron microscopy. It was found that the position of the active component has a significant effect on the catalytic activity. In the TS–TiO2 nanocomposites, cobalt oxides located at the new pores developed between TS and TiO2 can exhibit better catalytic activity. Also, a positive relationship is observed between Co dispersion and FTS catalytic performance for all catalysts. The catalytic activity is improved on increasing the dispersion of Co.  相似文献   

5.
Pd supported on TiO2-Al2O3 binary oxides prepared by coprecipitation method has been investigated for the total oxidation of methane. All Pd/TiO2-Al2O3 catalysts show higher activity than Pd/Al2O3 and Pd/TiO2. Among them, Pd/2Ti-3Al with a Ti/Al ratio of 2 to 3 has a T90% of 395 ℃ at a gas hourly mass velocity of 33000 mL/(h*g), which is at least 50 ℃ lower than that of Pd supported on single metal oxide Al2O3 or TiO2. The results of TPR and ^180-isotope exchange experiments demonstrated that the excellent activity of Pd/2Ti-3Al was due to its high oxygen mobility and moderate reducibility, which is in accordance with our previous work, XPS results indicated that the dispersion of Pd was not the key factor to influence the catalytic activity.  相似文献   

6.
Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle‐assembly method. A triblock copolymer, poly(styrene‐b‐2‐vinyl pyridine‐b‐ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase.  相似文献   

7.
Cr‐doped TiO2/SiO2 nanostructured materials were prepared employing a layer‐by‐layer assemblym technique. TiO2 colloids were synthesized by a sol‐gel method using TiCl4 as a precursor. The experimental results showed that sphere‐type TiO2 particles on SiO2 exhibited uniform shape and a narrow size distribution. The amount of Ti (wt %) increased as a function of the number of the coating layers. The coatingv layers was composed of anatase titania nanocrystals at 550 °C. The onset of band‐gap transition for Crdoped TiO2/SiO2 showed a red shift compared with that for the undoped TiO2/SiO2. And the photocatalytic activity of Cr‐doped TiO2/SiO2 was higher than that of undoped sample.  相似文献   

8.
Supported single‐atom catalysts have been emerging as promising materials in a variety of energy catalysis applications. However, studying the role of metal–support interactions at the molecular level remains a major challenge, primarily due to the lack of precise atomic structures. In this work, by replacing the frequently used TiO2 support with its molecular analogue, titanium‐oxo cluster (TOC), we successfully produced a new kind of Ti‐O material doped with single silver sites. The as‐obtained Ag10Ti28 cluster, containing four exposed and six embedded Ag sites, is the largest noble‐metal‐doped Ti‐O cluster reported to date. Density functional theory (DFT) calculations show that the Ag10Ti28 core exhibits properties distinct from those of metallic Ag‐based materials. This Ti‐O material doped with single Ag sites presents a high ?d and moderate CO binding capacity comparable to that of metallic Cu‐based catalysts, suggesting that it might display different catalytic performance from the common Ag‐based catalysts, for example, for CO2 reduction. These results prove that the synergism of active surface metal atoms and the Ti‐O cluster support result in unique physical properties, which might open a new direction for single‐atom‐included catalysts.  相似文献   

9.
Novel non-hydrolytic syntheses of titanosilicate xerogels by polycondensation of silicon acetate, Si(OAc)4, with titanium (IV) dimethylamide or diethylamide, Ti(NR2)4 (R?=?Me, Et), are presented. The reactions are based on acetamide elimination and yield gels with a high content of Si?CO?Ti bonds in comparison with the ester elimination route. Although a ligand exchange was observed, it was interestingly not followed by homo-condensation and during the synthesis the phase separation to SiO2 and TiO2 was avoided. The degree of condensation reached up to 68?%. The xerogels prepared for a comparison by ester elimination from Si(OAc)4 and titanium (IV) isopropoxide featured a significantly lower content of the Si?CO?CTi bonds. The initial tests in the epoxidation of cyclohexene by cumyl hydroperoxide (CHP) indicated a high selectivity and moderate activity of the xerogels. The catalytic properties were significantly improved by combining non-hydrolytic and hydrolytic methods yielding mesoporous and homogeneous Si/Ti mixed oxides. The catalysts prepared by these methods provided a complete epoxidation of cyclohexene in 2?h at?65?°C.  相似文献   

10.
To obtain noble metal catalysts with high efficiency, long‐term stability, and poison resistance, Pt and Pd are assembled in highly ordered and vertically aligned TiO2 nanotubes (NTs) by means of the pulsed‐current deposition (PCD) method with assistance of ultrasonication (UC). Here, Pd serves as a dispersant which prevents agglomeration of Pt. Thus Pt–Pd binary catalysts are embed into TiO2 NTs array under UC in sunken patterns of composite spherocrystals (Sps). Owing to this synthesis method and restriction by the NTs, the these catalysts show improved dispersion, more catalytically active sites, and higher surface area. This nanotubular metallic support material with good physical and chemical stability prevents catalyst loss and poisoning. Compared with monometallic Pt and Pd, the sunken‐structured Pt–Pd spherocrystal catalyst exhibits better catalytic activity and poison resistance in electrocatalytic methanol oxidation because of its excellent dispersion. The catalytic current density is enhanced by about 15 and 310 times relative to monometallic Pt and Pd, respectively. The poison resistance of the Pt–Pd catalyst was 1.5 times higher than that of Pt and Pd, and they show high electrochemical stability with a stable current enduring for more than 2100 s. Thus, the TiO2 NTs on a Ti substrate serve as an excellent support material for the loading and dispersion of noble metal catalysts.  相似文献   

11.

The MCM‐41 and SiO2 supported TiCl4 and TiCl4/MgCl2 catalysts with different molar ratios of Mg/Ti were synthesized and used for ethylene polymerization under atmospheric pressure. The nanochannels of MCM‐41 serve as nanoscale polymerization reactor and the polyethylene nanofibers were extruded during the reaction. The nanofibers were observed in SEM micrographs of resulting polyethylene. The effect of MgCl2 on catalytic activity and thermal properties of resulting polyethylene is investigated too. In the presence of MgCl2, the catalytic activity increased and more crystalline polyethylene with higher melting points were formed. However, no fibers could be observed in the polyethylene prepared by SiO2 supported catalysts.  相似文献   

12.
研究了不同载体负载的Pt-Ni双金属和单金属催化剂上乙醇重整和1,3-丁二烯加氢反应性能, 以考察氧化物载体对双金属结构和催化活性的影响. 所用的氧化物载体包括γ-Al2O3, SiO2, TiO2, CeO2以及高比表面积(HSA)和低比表面积(LSA)ZrO2. 采用共浸渍法制备催化剂, 用CO化学吸附、透射电镜和扩展X射线吸收精细结构光谱进行催化剂表征, 采用傅里叶变换红外间歇反应器进行化学反应评价. 对于乙醇重整反应, Pt-Ni双金属催化剂优于单金属催化剂, Pt-Ni双金属催化剂活性顺序为TiO2 > SiO2 > γ-Al2O3 ≈ LSA-ZrO2 > CeO2 > HSA-ZrO2. 对于1,3-丁二烯加氢反应, 在SiO2, TiO2和HSA-ZrO2载体上双金属催化剂优于单金属催化剂, Pt-Ni双金属催化剂活性顺序为SiO2 > CeO2 > γ-Al2O3 > LSA-ZrO2 > HSA-ZrO2 ≈ TiO2.  相似文献   

13.
In this contribution we report on an XPS study of microporous and mesoporous titanosilicates, in particular microporous titanium silicalite TS‐1, ordered mesoporous Ti‐MCM‐41 and [Ti]‐MCM‐41 and amorphous mesoporous silica–titania (MST) catalysts. Our aim was to obtain both photoemission and x‐ray‐excited Auger data for Ti species on these catalysts and use them in a Ti Wagner plot to rationalize the dependence of the local electronic structure on the atomic environment. Isolated Ti(IV) species coordinated to four and six oxygen anions and segregated TiO2 clusters were detected on all catalysts by a curve‐fitting procedure of Ti 2p, O 1s and related peaks. The presence of the Si 2p peak excited by an O Kα ghost makes the detection of Ti LMM Auger transitions in mesoporous samples impossible due to the low Ti loadings and its homogeneous distribution in the silica matrix. Small TiO2 clusters are eventually segregated within the mesopores of the catalysts and not at their external surface. On TS‐1 microporous catalysts with similar Ti loadings to the mesoporous catalysts we were able to detect Ti LMM Auger transitions, and by the Ti Wagner plot we clearly identify the presence of octahedrally coordinated Ti(IV) species. Thus, it is suggested that on TS‐1 the in‐framework (? O)4Ti species are easily changed to (? O)4(H2O)2Ti species by insertion of water molecules from the atmosphere. Small TiO2 clusters (diameter <5 nm), eventually present on samples with Ti loading >2 wt.%, are segregated at their external surface and present spectroscopic features similar to (? O)4(H2O)2Ti species. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Titanium-silicon (Ti/Si) binary oxides having a varying Ti content were prepared using the sol-gel method and used as photocatalysts. The photo-oxidation of benzene to phenol was carried out using Ti/Si binary oxide catalysts in the presence of benzene, water and gaseous oxygen. The amounts of benzene used hardly affected the phenol yield. On the other hand, the addition of sulfuric acid into reaction solution led to the improvement of phenol formation. The H2O2 formation rate seemed to be related to the phenol yeilds. The photocatalytic reactivity of Ti/Si binary oxide having different TiO2 contents was investigated and it was found to be dramatically enhanced in the range of lower TiO2 contents. XANES, ESR and XRD spectroscopic investigations of these Ti/Si binary oxide catalysts indicated that Ti species were highly dispersed in SiO2 matrices and existed in a tetrahedral coordination. The photo-irradiation of catalysts having tetrahedral Ti species seemed to effectively lead to the formation of H2O2 as an intermediate.  相似文献   

15.
Ni‐loaded pure siliceous and aluminosilicate MCM‐41 (Ni/MCM‐41) and nickel‐loaded silica (15Ni/SiO2) were synthesized via wet impregnation and were characterized by various techniques. The H2 consumption in the TPR analysis was found to be proportional to the Ni amount in the calcined samples. After reduction the average Ni particle sizes of 15Ni/MCM‐41 and 15Ni/SiO2 were 9–12 and 16 nm, respectively, by means of XRD and TEM measurements. All catalysts owned weak and intermediate Lewis acid sites that increased slightly with increasing the Ni amount and the Al content. In the liquid phase hydrogenation of t,t,c‐1,5,9‐cyclododecatriene over Ni/MCM‐41, the catalytic activity was parallel to the Ni content and enhanced slightly with the acid amount of the catalysts. Consequently, it was proposed that the Ni metallic sites contributed the major effect to the catalytic activity while the Lewis acid sites promoted a small but significant influence on the catalytic performance. It is noteworthy that all 15Ni/MCM‐41 catalysts exhibited remarkably higher activity than that of the conventional 15Ni/SiO2 catalyst.  相似文献   

16.
The discovery that gold catalysts could be active for CO oxidation at cryogenic temperatures has ignited much excitement in nanocatalysis. Whether the alternative Pt group metal (PGM) catalysts can exhibit such high performance is an interesting research issue. So far, no PGM catalyst shows activity for CO oxidation at cryogenic temperatures. In this work, we report a sub‐nano Rh/TiO2 catalyst that can completely convert CO at 223 K. This catalyst exhibits at least three orders of magnitude higher turnover frequency (TOF) than the best Rh‐based catalysts and comparable to the well‐known Au/TiO2 for CO oxidation. The specific size range of 0.4–0.8 nm Rh clusters is critical to the facile activation of O2 over the Rh–TiO2 interface in a form of Rh?O?O?Ti (superoxide). This superoxide is ready to react with the CO adsorbed on TiO2 sites at cryogenic temperatures.  相似文献   

17.
Three supported Au catalysts have been prepared by the deposition‐precipitation method by using the active carbon (AC), SiO2‐AC, and SiO2‐AC‐hollowed. The 3 supports were characterized by Brunauer‐Emmett‐Teller and scanning electron microscopy. Meanwhile, the supported Au nanoparticles were also characterized in detail by X‐ray powder diffraction, transmission electron microscopy, H2‐TRP, and X‐ray photoelectron spectroscopy, and their catalytic activity and stability in CO oxidation was evaluated. The results demonstrated that Au supported on SiO2‐AC‐hollowed exhibited much higher catalytic activity with acceptable stability for 72 hours than the other 2. We attributed to finer supported Au nanoparticles with abundant low‐coordinated Au atoms on the surfaces of hollowed supports with large special surface area and abundant pore structure. In summary, we successfully found an efficient and cheap method to prepare catalysts with high catalytic activity and acceptable stability by modifying the inactive supports.  相似文献   

18.
In situ IR and mass spectrometry evidence for the catalytic formation on SiO2 and TiO2 surfaces of glycine oligomers (poly‐Gly) up to 16 units long by successive feeding with monomers from the vapor phase is presented. Parallel experiments carried out on hydroxyapatite resulted in the unreactive adsorption of Gly, thus indicating that the oligomerization was specifically catalyzed by the surfaces of SiO2 and TiO2. Furthermore, the poly‐Gly moved on the surface when contacted with H2O vapor and formed self‐assembled aggregates containing both helical and β‐sheet‐like structural motifs. These results indicate that polypeptides formed by the condensation of amino acids adsorbed on a mineral surface can evolve into structured supramolecular assemblies.  相似文献   

19.
The support effects (SiO2, TiO2, Al2O3, MgO, CeO2 and ZrO2) as well as addition effect of group 6b and 7b elements were studied over various supported group 8–10 metal catalysts. Basic oxide support improved the selectivity to CO2 and acidic support suppressed the catalytic activity and selectivity. Among the investigated catalysts Pt–Mo/TiO2 was the most active catalysts, whereas Ir–Re/SiO2 was the most selective catalysts for H2 and CO2 formation. The mechanism of the liquid phase methanol reforming reaction over silica supported Pt–Ru catalyst was studied by kinetic investigations. The rate of H2 formation over Pt–Ru/SiO2 catalysts was more than 20 times faster than that over Pt/SiO2 catalysts with high selectivity for CO2 (72.3%), indicating a marked addition effect of Ru. In the case of HCHO–H2O reaction over Pt–Ru/SiO2, the H2 formation rate was five times larger than that in the CH3OH–H2O reaction but selectivity to CO2 was only 4%. On the contrary, in the HCOOCH3–H2O and HCOOH–H2O reactions, both high activity and selectivity were observed over Pt–Ru/SiO2. These results clearly indicate that the CO2 formation does not proceed via HCHO decomposition and following water gas shift reaction.  相似文献   

20.
СоМоS/Sup catalysts were prepared from 12-molybdophosphoric heteropoly acid and cobalt citrate, with Al2O3, SiO2, TiO2, and ZrO2 used as supports (Sup). The synthesized catalysts were studied by low-temperature nitrogen adsorption, X-ray diffraction, temperature-programmed ammonia desorption, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The catalytic properties of the catalysts were studied in a flow-through installation at 260 and 340°С, pressure of 3.0 MPa, feed space velocity of 80 h–1, and Н2/feed ratio of 500 Ln.c. L–1. The guaiacol hydrodeoxygenation rate increases with a decrease in the mean length of the active phase particles, irrespective of the kind of the oxide support. As for the support effect, the catalyst activity decreases in the order SiO2 > Al2O3 > ZrO2 ~ TiO2. On the other hand, the catalysts supported on ZrO2 and Al2O3 exhibit the highest stability. The causes of the observed trends and the possible relationships between the characteristics of the catalysts and active phase nanoparticles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号