首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Lead‐halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common‐place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light‐emitting devices, with the peak luminance of 4428 cd m?2 and external quantum yield of 1.7 %.  相似文献   

2.
Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light‐management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material. Pre‐patterned polydimethylsiloxane (PDMS) templates are used for the template‐induced self‐assembly of 10 nm CsPbBr3 perovskite NC colloids into large area (1 cm2) 2D photonic crystals with tunable lattice spacing, ranging from 400 nm up to several microns. The photonic crystal arrangement facilitates efficient light coupling to the nanocrystal layer, thereby increasing the electric field intensity within the perovskite film. As a result, CsPbBr3 2D photonic crystals show amplified spontaneous emission (ASE) under lower optical excitation fluences in the near‐IR, in contrast to equivalent flat NC films prepared using the same colloidal ink. This improvement is attributed to the enhanced multi‐photon absorption caused by light trapping in the photonic crystal.  相似文献   

3.
The colloidal synthesis and assembly of semiconductor nanowires continues to attract a great deal of interest. Herein, we describe the single‐step ligand‐mediated synthesis of single‐crystalline CsPbBr3 perovskite nanowires (NWs) directly from the precursor powders. Studies of the reaction process and the morphological evolution revealed that the initially formed CsPbBr3 nanocubes are transformed into NWs through an oriented‐attachment mechanism. The optical properties of the NWs can be tuned across the entire visible range by varying the halide (Cl, Br, and I) composition through subsequent halide ion exchange. Single‐particle studies showed that these NWs exhibit strongly polarized emission with a polarization anisotropy of 0.36. More importantly, the NWs can self‐assemble in a quasi‐oriented fashion at an air/liquid interface. This process should also be easily applicable to perovskite nanocrystals of different morphologies for their integration into nanoscale optoelectronic devices.  相似文献   

4.
Hydrochromic materials that can reversibly change color upon water treatment have attracted much attention owing to their potential applications in diverse fields. Herein, for the first time, we report that space‐confined CsPbBr3 nanocrystals (NCs) are hydrochromic. When CsPbBr3 NCs are loaded into a porous matrix, reversible transition between luminescent CsPbBr3 and non‐luminescent CsPb2Br5 can be achieved upon the exposure/removal of water. The potential applications of hydrochromic CsPbBr3 NCs in anti‐counterfeiting are demonstrated by using CsPbBr3 NCs@mesoporous silica nanospheres (around 100 nm) as the starting material. Owing to the small particle size and negatively charged surface, the as‐prepared particles can be laser‐jet printed with high precision and high speed. We demonstrate the excellent stability over repeated transformation cycles without color fade. This new discovery may not only deepen the understanding of CsPbX3, but also open a new way to design CsPbX3 materials for new applications.  相似文献   

5.
Exploiting advanced photocatalysts under visible light is of primary significance for the development of environmentally relevant photocatalytic decontamination processes. In this study, the ionic liquid (IL), 1‐butyl‐3‐methylimidazolium tetrafluoroborate, was employed for the first time as both a structure‐directing agent and a dopant for the synthesis of novel fluorinated B/C‐codoped anatase TiO2 nanocrystals (TIL) through hydrothermal hydrolysis of tetrabutyl titanate. These TIL nanocrystals feature uniform crystallite and pore sizes and are stable with respect to phase transitions, crystal ripening, and pore collapse upon calcination treatment. More significantly, these nanocrystals possess abundant localized states and strong visible‐light absorption in a wide range of wavelengths. Because of synergic interactions between titania and codopants, the calcined TIL samples exhibited high visible‐light photocatalytic activity in the presence of oxidizing Rhodamine B (RhB). In particular, 300 °C‐calcined TIL was most photocatalytically active; its activity was much higher than that of TiO1.98N0.02 and reference samples (TW) obtained under identical conditions in the absence of ionic liquid. Furthermore, the possible photocatalytic oxidation mechanism and the active species involved in the RhB degradation photocatalyzed by the TIL samples were primarily investigated experimentally by using different scavengers. It was found that both holes and electrons, as well as their derived active species, such as .OH, contributed to the RhB degradation occurring on the fluorinated B/C‐codoped TiO2 photocatalyst, in terms of both the photocatalytic reaction dynamics and the reaction pathway. The synthesis of the aforementioned novel photocatalyst and the identification of specific active species involved in the photodegradation of dyes could shed new light on the design and synthesis of semiconductor materials with enhanced photocatalytic activity towards organic pollutants.  相似文献   

6.
The all‐inorganic CsPbBr3 perovskite solar cell (PSC) is a promising solution to balance the high efficiency and poor stability of state‐of‐the‐art organic–inorganic PSCs. Setting inorganic hole‐transporting layers at the perovskite/electrode interface decreases charge carrier recombination without sacrificing superiority in air. Now, M‐substituted, p‐type inorganic Cu(Cr,M)O2 (M=Ba2+, Ca2+, or Ni2+) nanocrystals with enhanced hole‐transporting characteristics by increasing interstitial oxygen effectively extract holes from perovskite. The all‐inorganic CsPbBr3 PSC with a device structure of FTO/c‐TiO2/m‐TiO2/CsPbBr3/Cu(Cr,M)O2/carbon achieves an efficiency up to 10.18 % and it increases to 10.79 % by doping Sm3+ ions into perovskite halide, which is much higher than 7.39 % for the hole‐free device. The unencapsulated Cu(Cr,Ba)O2‐based PSC presents a remarkable stability in air in either 80 % humidity over 60 days or 80 °C conditions over 40 days or light illumination for 7 days.  相似文献   

7.
Cesium‐based perovskite nanocrystals (NCs) have outstanding photophysical properties improving the performances of lighting devices. Fundamental studies on excitonic properties and hot‐carrier dynamics in perovskite NCs further suggest that these materials show higher efficiencies compared to the bulk form of perovskites. However, the relaxation rates and pathways of hot‐carriers are still being elucidated. By using ultrafast transient spectroscopy and calculating electronic band structures, we investigated the dependence of halide in Cs‐based perovskite (CsPbX3 with X=Br, I, or their mixtures) NCs on the hot‐carrier relaxation processes. All samples exhibit ultrafast (<0.6 ps) hot‐carrier relaxation dynamics with following order: CsPbBr3 (310 fs)>CsPbBr1.5I1.5 (380 fs)>CsPbI3 NC (580 fs). These result accounts for a reduced light emission efficiency of CsPbI3 NC compared to CsPbBr3 NC.  相似文献   

8.
Herein, we report the facile growth of three‐dimensional CsPbBr3 perovskite supercrystals (PSCs) self‐assembled from individual CsPbBr3 perovskite quantum dots (PQDs). By varying the carbon chain length of a surface‐bound ligand molecule, 1‐alkynyl acid, different morphologies of PSCs were obtained accompanied by an over 1000‐fold photoluminescence improvement compared with that of PQDs. Systematic analyses have shown, for the first time, that under UV irradiation, CsBr, the byproduct formed during PQDs synthesis, could effectively catalyze the homocoupling reaction between two alkynyl groups, which further worked as a driving force to push forward the self‐assembly of PQDs.  相似文献   

9.
Halide perovskite quantum dots (QDs) have great potential in photocatalytic applications if their low charge transportation efficiency and chemical instability can be overcome. To circumvent these obstacles, we anchored CsPbBr3 QDs (CPB) on NHx‐rich porous g‐C3N4 nanosheets (PCN) to construct the composite photocatalysts via N?Br chemical bonding. The 20 CPB‐PCN (20 wt % of QDs) photocatalyst exhibits good stability and an outstanding yield of 149 μmol h?1 g?1 in acetonitrile/water for photocatalytic reduction of CO2 to CO under visible light irradiation, which is around 15 times higher than that of CsPbBr3 QDs. This study opens up new possibilities of using halide perovskite QDs for photocatalytic application.  相似文献   

10.
We successfully prepared QDs incorporated into a silica/alumina monolith (QDs‐SAM) by a simple sol–gel reaction of an Al–Si single precursor with CsPbBr3 QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr3 QDs from surface damages during the sol–gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr3 QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr3 QDs‐SAM in powder form was easily mixed into the resins and applied as color‐converting layer with curing on blue light‐emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W−1 and a narrow emission with a full width at half maximum (FWHM) of 25 nm.  相似文献   

11.
Although metal oxide nanocrystals are often highly active, rapid aggregation (particularly in water) generally precludes detailed solution‐state investigations of their catalytic reactions. This is equally true for visible‐light‐driven water oxidation with hematite α‐Fe2O3 nanocrystals, which bridge a conceptual divide between molecular complexes of iron and solid‐state hematite photoanodes. We herein report that the aqueous solubility and remarkable stability of polyoxometalate (POM)‐complexed hematite cores with 275 iron atoms enable investigations of visible‐light‐driven water oxidation at this frontier using the versatile toolbox of solution‐state methods typically reserved for molecular catalysis. The use of these methods revealed a unique mechanism, understood as a general consequence of fundamental differences between reactions of solid‐state metal oxides and freely diffusing “fragments” of the same material.  相似文献   

12.
The instability of cesium lead bromide (CsPbBr3) nanocrystals (NCs) in polar solvents has hampered their use in photocatalysis. We have now succeeded in synthesizing CsPbBr3–CdS heterostructures with improved stability and photocatalytic performance. While the CdS deposition provides solvent stability, the parent CsPbBr3 in the heterostructure harvests photons to generate charge carriers. This heterostructure exhibits longer emission lifetime (τave = 47 ns) than pristine CsPbBr3 (τave = 7 ns), indicating passivation of surface defects. We employed ethyl viologen (EV2+) as a probe molecule to elucidate excited state interactions and interfacial electron transfer of CsPbBr3–CdS NCs in toluene/ethanol mixed solvent. The electron transfer rate constant as obtained from transient absorption spectroscopy was 9.5 × 1010 s−1 and the quantum efficiency of ethyl viologen reduction (ΦEV+˙) was found to be 8.4% under visible light excitation. The Fermi level equilibration between CsPbBr3–CdS and EV2+/EV+˙ redox couple has allowed us to estimate the apparent conduction band energy of the heterostructure as −0.365 V vs. NHE. The insights into effective utilization of perovskite nanocrystals built around a quasi-type II heterostructures pave the way towards effective utilization in photocatalytic reduction and oxidation processes.

The insights into effective utilization of perovskite nanocrystals built around a CsPbBr3–CdS heterostructure pave the way towards their utilization in photocatalytic reduction and oxidation processes.  相似文献   

13.
Herein, we introduce a facile, user‐ and environmentally friendly (n‐octanol‐induced) oleic acid (OA)/ionic liquid (IL) two‐phase system for the phase‐ and size‐controllable synthesis of water‐soluble hexagonal rare earth (RE=La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (<50 nm). The unique role of the IL 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BmimPF6) and n‐octanol in modulating the phase structure and particle size are discussed in detail. More importantly, the mechanism of the (n‐octanol‐induced) OA/IL two‐phase system, the formation of the RE fluoride nanocrystals, and the distinctive size‐ and morphology‐controlling capacity of the system are presented. BmimPF6 is versatile in term of crystal‐phase manipulation, size and shape maintenance, and providing water solubility in a one‐step reaction. The luminescent properties of Er3+‐, Ho3+‐, and Tm3+‐doped LaF3, NaGdF4, and NaYF4 nanocrystals were also studied. It is worth noting that the as‐prepared products can be directly dispersed in water due to the hydrophilic property of Bmim+ (cationic part of the IL) as a capping agent. This advantageous feature has made the IL‐capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF4:Yb,Er nanocrystals before and after silica coating was conducted for further biological applications.  相似文献   

14.
A top‐down method is demonstrated for the fabrication of CH3NH3PbBr3 and CH3NH3PbI3 perovskite nanocrystals, employing a mixture of ligands oleic acid and oleylamine as coordinating solvents. This approach avoids the use of any polar solvents, skips multiple reaction steps by employing a simple ultrasonic treatment of the perovskite precursors, and yields rather monodisperse blue‐, green‐, and red‐emitting methylammonium lead halide nanocrystals with a high photoluminescence quantum yield (up to 72 % for the green‐emitting nanocrystals) and remarkably improved stability. After discussing all relevant reaction parameters, the green‐emitting CH3NH3PbBr3 nanocrystals are employed as a component of down‐conversion white‐light‐emitting devices.  相似文献   

15.
Lead halide perovskite nanocrystals as promising ultrapure emitters are outstanding candidates for next-generation light-emitting diodes (LEDs) and display applications, but the thermal quenching behavior of light emission has severely hampered their real-world applications. Here, we report an anion passivation strategy to suppress the emission thermal quenching behavior of CsPbBr3 perovskite nanocrystals. By treating with specific anions (such as SO42−, OH, and F ions), the corresponding wide-bandgap passivation layers, PbSO4, Pb(OH)2, and PbF2, were obtained. They not only repair the surface defects of CsPbBr3 nanocrystals but also stabilize the phase structure of the inner CsPbBr3 core by constructing a core–shell like structure. The photoluminescence thermal resistance experiments show that the treated sample could preserve 79% of its original emission intensity up to 373 K, far superior to that (17%) of pristine CsPbBr3. Based on the thermally stable CsPbBr3 nanocrystals, we achieved temperature-stable white LED devices with a stable electroluminescence spectrum, color gamut and color coordinates in thermal stress tests (up to 373 K).

Highly thermotolerant CsPbBr3 perovskite nanocrystals with anti-thermal quenching performance were obtained by constructing wide-bandgap passivation layers coated strongly on the perovskite surface.  相似文献   

16.
We report the synthesis of single‐crystalline and near‐monodispersed NaMF3 (M=Mn, Co, Ni, Mg), LiMAlF6 (M=Ca, Sr), and NaMgF3:Yb,Er nanocrystals (quasisquare nanoplates, nanorods, and nanopolygons) by the cothermolysis of multiple trifluoroacetates in hot combined organic solvents (oleic acid, oleylamine, and 1‐octadecene). The nanocrystals were characterized by XRD, TEM, superconductive quantum interference device (SQUID), and upconversion luminescence spectroscopy. By regulating the polarity of the dispersant, the NaMF3 (M=Mn, Co, Ni) nanoplates were partially aligned to form nanoarrays on copper TEM grids. The sizes of the NaMF3 nanocrystals were easily tuned by the use of proper synthetic conditions such as reaction temperature and time and solvent composition. On the basis of a series of experiments in which the reaction conditions were varied, together with GC–MS and FTIR analysis, the reaction pathways for the formation of these nanocrystals from trifluoroacetate precursors were proposed. The magnetic measurements showed that the differently sized NaMnF3 square plates displayed interesting weak ferromagnetic behavior on the nanometer scale. The strong red upconversion luminescence emitted from the NaMgF3:Yb,Er nanorods under 980‐nm near‐IR laser excitation suggests that NaMgF3 may be a good candidate host material for red upconversion luminescence.  相似文献   

17.
CsPbBr3 nanocrystals (NCs) encapsulated in a transparent polystyrene (PS) fiber matrix (CsPbBr3@PS) have been synthesized to protect the NCs. The ultrafast charge delocalization dynamics of the embedded NCs have been demonstrated, and the results are compared with the pristine CsPbBr3 in toluene. The electrospinning method was employed for the preparation of CsPbBr3@PS fibers by using a polystyrene solution doped with pre-synthesized CsPbBr3 and characterized by XRD, HRTEM, and X-ray photoelectron spectroscopy (XPS). Energy level diagrams of CsPbBr3 and PS suggest that CsPbBr3@PS fibers make a type I core–shell structure. The carrier cooling for CsPbBr3@PS fibers is found to be much slower than pure CsPbBr3 NCs. This observation suggests that photoexcited electrons from CsPbBr3 NCs get delocalized from the conduction band of the perovskite to lowest unoccupied molecular orbital (LUMO) of the PS fiber matrix. The CsPbBr3@PS fibers possess remarkable stability under ambient conditions as well as in water over months. The clear understanding of charge carrier relaxation dynamics of CsPbBr3 confined in PS fibers could help to design robust optoelectronic devices.  相似文献   

18.
A general nonaqueous route for the synthesis of phase‐pure transition‐metal niobate (InNbO4, MnNb2O6, and YNbO4) nanocrystals was developed based on the one‐pot solvothermal reaction of niobium chloride and the corresponding transition‐metal acetylacetonates in benzyl alcohol at 200 °C. All samples were carefully characterized by XRD, TEM, HRTEM, and energy‐dispersive X‐ray (EDX) analysis. The crystallization mechanism of these niobate nanocrystals points to a two‐step pathway. First, metal hydroxide crystals and amorphous niobium oxide are formed. Second, metal niobate nanocrystals are generated from the intermediates by a dissolution–recrystallization mechanism. The reaction mechanisms, that is, the processes responsible for the oxygen supply for oxide formation, were found to be rather complex and involve niobium‐mediated ether elimination as the main pathway, accompanied by solvolysis of the acetylacetonate ligands and benzylation reactions.  相似文献   

19.
A new visible‐light‐induced trifluoromethylation of isonitrile‐substituted methylenecyclopropanes is developed. A range of substituted 6‐(trifluoromethyl)‐7,8‐dihydrobenzo[k]phenanthridine derivatives are readily furnished by this newly developed tandem reaction with moderate to good yields. This reaction allows the direct formation of two six‐membered rings and three new C?C bonds, including the C?CF3 bond, under visible light irradiation.  相似文献   

20.
NiAl2O4 spinel nanocrystals were synthesized as mesoporous catalysts and were fully characterized using Fourier‐transform infrared spectroscopy (FT‐IR), X‐ray diffraction patterns (XRD), scanning electron microscopy (SEM), and Energy‐dispersive X‐ray spectroscopy (EDS). These nanocrystals catalyzed the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐one derivatives via a one‐pot, three‐component condensation reaction of aromatic aldehydes, isatoic anhydride, and ammonium acetate or primary aromatic amine under microwave irradiation. By far, the most obvious advantages of the offered process are efficiency and recyclability of the catalyst as well as a significantly shorter reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号