首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface‐enhanced Raman scattering (SERS) is quickly growing as an analytical technique, because it offers both molecular specificity and excellent sensitivity. For select substrates, SERS can even be observed from single molecules, which is the ultimate limit of detection. This review describes recent developments in the field of single‐molecule SERS (SM‐SERS) with a focus on new tools for characterizing SM‐SERS‐active substrates and how they interact with single molecules on their surface. In particular, techniques that combine optical spectroscopy and microscopy with electron microscopy are described, including correlated optical and transmission electron microscopy, correlated super‐resolution imaging and scanning electron microscopy, and correlated optical microscopy and electron energy loss spectroscopy.  相似文献   

2.
Surface‐enhanced Raman spectroscopy (SERS) is an attractive tool for the sensing of molecules in the fields of chemical and biochemical analysis as it enables the sensitive detection of molecular fingerprint information even at the single‐molecule level. In addition to traditional coinage metals in SERS analysis, recent research on noble‐metal‐free materials has also yielded highly sensitive SERS activity. This Minireview presents the recent development of noble‐metal‐free materials as SERS substrates and their potential applications, especially semiconductors and emerging graphene‐based nanostructures. Rather than providing an exhaustive review of this field, possible contributions from semiconductor substrates, characteristics of graphene enhanced Raman scattering, as well as effect factors such as surface plasmon resonance, structure and defects of the nanostructures that are considered essential for SERS activity are emphasized. The intention is to illustrate, through these examples, that the promise of noble‐metal‐free materials for enhancing detection sensitivity can further fuel the development of SERS‐related applications.  相似文献   

3.
Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >10(7), much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules.  相似文献   

4.
Surface‐enhanced Raman scattering (SERS) is a popular vibrational spectroscopic technique that can have several applications in chemical and biological sensing. Within the last decade or so, our ability to chemically synthesize nanostructures has improved to the point that the rational design of a variety of SERS substrates is now viable. In this report, we describe a computational study using the finite element method (FEM) to investigate the effects of patchy silica coatings on silver nanowires. We found that varying the degree of silica coating on silver nanowires impacts the enhancement and may be explained through two processes. The first process is a consequence of changes in the dielectric environment surrounding the nanowire due to the silica. As additional layers of silica coat the nanowire, the localized surface plasmon resonance of the nanowire redshifts. The second process is a result of silica distorting the local electric field around the nanowire surface. Anisotropic silica coating can influence anticipated enhancement depending on its spatial localization with respect to excited plasmon modes in the nanowire. We propose that the design of nanostructures with patchy silica coatings can be a viable tool for increasing surface enhancement.  相似文献   

5.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   

6.
Methods for chemical analysis at the nanometer scale are crucial for understanding and characterizing nanostructures of modern materials and biological systems. Tip‐enhanced Raman spectroscopy (TERS) combines the chemical information provided by Raman spectroscopy with the signal enhancement known from surface‐enhanced Raman scattering (SERS) and the high spatial resolution of atomic force microscopy (AFM) or scanning tunneling microscopy (STM). A metallic or metallized tip is illuminated by a focused laser beam and the resulting strongly enhanced electromagnetic field at the tip apex acts as a highly confined light source for Raman spectroscopic measurements. This Review focuses on the prerequisites for the efficient coupling of light to the tip as well as the shortcomings and pitfalls that have to be considered for TERS imaging, a fascinating but still challenging way to look at the nanoworld. Finally, examples from recent publications have been selected to demonstrate the potential of this technique for chemical imaging with a spatial resolution of approximately 10 nm and sensitivity down to the single‐molecule level for applications ranging from materials sciences to life sciences.  相似文献   

7.
Surface‐enhanced Raman scattering (SERS) has become a mature vibrational spectroscopic technique during the last decades and the number of applications in the chemical, material, and in particular life sciences is rapidly increasing. This Review explains the basic theory of SERS in a brief tutorial and—based on original results from recent research—summarizes fundamental aspects necessary for understanding SERS and provides examples for the preparation of plasmonic nanostructures for SERS. Chemical applications of SERS are the centerpiece of this Review. They cover a broad range of topics such as catalysis and spectroelectrochemistry, single‐molecule detection, and (bio)analytical chemistry.  相似文献   

8.
Surface-enhanced Raman scattering (SERS) was discovered three decades ago and has gone through a tortuous pathway to develop into a powerful diagnostic technique. Recently, the lack of substrate, surface and molecular generalities of SERS has been circumvented to a large extent by devising and utilizing various nanostructures by many groups including ours. This article aims to present our recent approaches of utilizing the borrowing SERS activity strategy mainly through constructing two types of nanostructures. The first nanostructure is chemically synthesized Au nanoparticles coated with ultra-thin shells (ca. one to ten atomic layers) of various transition metals, e.g., Pt, Pd, Ni and Co, respectively. Boosted by the long-range effect of the enhanced electromagnetic (EM) field generated by the highly SERS-active Au core, the originally low surface enhancement of the transition metal can be substantially improved giving total enhancement factors up to 10(4)-10(5). It allows us to obtain the Raman spectra of surface water, having small Raman cross-section, on several transition metals for the first time. To expand the surface generality of SERS, tip-enhanced Raman spectroscopy (TERS) has been employed. With TERS, a nanogap can be formed controllably between an atomically flat metal surface and the tip with an optimized shape, within which the enhanced EM field from the tip can be coupled (borrowed) effectively. Therefore, one can obtain surface Raman signals (TERS signals) from adsorbed species at Au(110), Au(111) and, more importantly, Pt(l10) surfaces. The enhancement factor achieved on these single crystal surfaces can be up to 106, especially with a very high spatial resolution down to about 14 nm. To fully accomplish the borrowing strategy from different nanostructures and to explain the experimental observations, a three-dimensional finite-difference time-domain method was used to calculate and evaluate the local EM field on the core-shell nanoparticle surfaces and the TERS tips. Finally, prospects and further developments of this valuable strategy are briefly discussed with emphasis on the emerging experimental methodologies.  相似文献   

9.
Graphene‐enhanced Raman scattering (GERS) is emerging as an important method due to the need for highly reproducible, quantifiable, and biocompatible active substrates. As a result of its unique two‐dimensional carbon structure, graphene provides particularly large enhanced Raman signals for molecules adsorbed on its surface. In this work, the GERS signals of a test molecule, 4‐mercaptobenzoic acid (4‐MBA), with reproducible enhancement factors are discussed and compared with surface‐enhanced Raman scattering (SERS) signals from highly active substrates, covered with spherical silver nanoparticles. It is shown that chemical interactions between the molecule and graphene can result in a frequency shift in the graphene‐enhanced Raman signal of the molecule.  相似文献   

10.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A remarkable enhancement of Raman scattering is achieved by submicrometer‐sized spherical ZnO superstructures. The secondary superstructures of ZnO particles with a uniform diameter in the range of 220–490 nm was formed by aggregating ca. 13 nm primary single crystallites. By engineering the superstructure size to induce Mie resonances, leading to an electromagnetic contribution to the SERS enhancement. Meanwhile, a highly efficient charge‐transfer (CT) contribution derived from the primary structure of the ZnO nanocrystallites was able to enhance the SERS signals as well. The highest Raman enhancement factor of 105 was achieved for a non‐resonant molecule by the synergistic effect of CT and Mie resonances. The Mie resonances scattered near‐field effect investigated in the present study provides not only an important guide for designing novel SERS‐active semiconductor substrates, but also a coherent framework for modelling the electromagnetic mechanism of SERS on semiconductors.  相似文献   

12.
Plasmonic nanomaterials possessing large‐volume, high‐density hot spots with high field enhancement are highly desirable for ultrasensitive surface‐enhanced Raman scattering (SERS) sensing. However, many as‐prepared plasmonic nanomaterials are limited in available dense hot spots and in sample size, which greatly hinder their wide applications in SERS devices. Here, we develop a two‐step physical deposition protocol and successfully fabricate 3D hierarchical nanostructures with highly dense hot spots across a large scale (6 × 6 cm2). The nanopatterned aluminum film was first prepared by thermal evaporation process, which can provide 3D quasi‐periodic cloud‐like nanostructure arrays suitable for noble metal deposition; then a large number of silver nanoparticles with controllable shape and size were decorated onto the alumina layer surfaces by laser molecular beam epitaxy, which can realize large‐area accessible dense hot spots. The optimized 3D‐structured SERS substrate exhibits high‐quality detection performance with excellent reproducibility (13.1 and 17.1%), whose LOD of rhodamine 6G molecules was 10?9 M. Furthermore, the as‐prepared 3D aluminum/silver SERS substrate was applied in detection of melamine with the concentration down to 10?7 M and direct detection of melamine in infant formula solution with the concentration as low 10 mg/L. Such method to realize large‐area hierarchical nanostructures can greatly simplify the fabrication procedure for 3D SERS platforms, and should be of technological significance in mass production of SERS‐based sensors.  相似文献   

13.
Surface‐enhanced Raman spectroscopy (SERS) is an emerging technology in the field of analytics. Due to the high sensitivity in connection with specific Raman molecular fingerprint information SERS can be used in a variety of analytical, bioanalytical, and biosensing applications. However, for the SERS effect substrates with metal nanostructures are needed. The broad application of this technology is greatly hampered by the lack of reliable and reproducible substrates. Usually the activity of a given substrate has to be determined by time‐consuming experiments such as calibration or ultramicroscopic studies. To use SERS as a standard analytical tool, cheap and reproducible substrates are required, preferably with a characterization technique that does not interfere with the subsequent measurements. Herein we introduce an innovative approach to produce low‐cost and large‐scale reproducible substrates for SERS applications, which allows easy and economical production of micropatterned SERS active surfaces on a large scale. This approach is based on an enzyme‐induced growth of silver nanostructures. The special structural feature of the enzymatically deposited silver nanoparticles prevents the breakdown of SERS activity even at high particle densities (particle density >60 %) that lead to a conductive layer. In contrast to other approaches, this substrate exhibits a relationship between electrical conductivity and the resulting SERS activity of a given spot. This enables the prediction of the SERS activity of the nanostructure ensemble and therewith the controllable and reproducible production of SERS substrates of enzymatic silver nanoparticles on a large scale, utilizing a simple measurement of the electrical conductivity. Furthermore, through a correlation between the conductivity and the SERS activity of the substrates it is possible to quantify SERS measurements with these substrates.  相似文献   

14.
In this study, the distance‐dependent enhancement effect in surface‐enhanced Raman scattering (SERS) was explored with molecules bearing different lengths of conjugated double bonds. These conjugated molecules were synthesized utilizing the diazotization‐coupling reaction allowing a thio group on one end and a nitro group on the other end. The thiol group allows the probed molecule to chemisorb on the surface of silver nanoparticles (AgNPs). The opposite end of each molecule contains a nitro group, which gives an intense SERS signal to show a fair and accurate comparison of the effect of chain length. The obtained SERS intensities were correlated with the chain lengths of these synthesized molecules, which ranged from 0.6 to 2.0 nm between the nitro and thiol groups. Based on these results, the electromagnetic field effect was mainly responsible for the signal enhancements in SERS measurements. Also, the obtained signals were exponentially decayed due to the distances of the surface of AgNPs. Based on the SERS intensities of the conjugated molecules, the contribution of CT effect to SERS for these examined molecules were limited.  相似文献   

15.
Column electrodes pretreated through oxidation–reduction cycles were traditionally used in electrochemical surface‐enhanced Raman scattering (SERS). In this study, a disposable screen‐printed carbon electrode was introduced into in situ electrochemical SERS through the electrodeposition of dendritic gold/silver nanoparticles (Au/AgNPs) onto the surface of the carbon working electrode to induce the SERS enhancement effect on the electrode. Scanning electron microscopy images showed that dendritic Au/AgNPs nanostructures could be fabricated under appropriate electrodeposition conditions and could present a minimum SERS factor of 4.25 × 105. Furthermore, the absorbed behavior of 4‐mercaptopyridine was investigated under different potentials. The adsorption configuration was inferred to transform from ‘vertical’ to ‘lying‐flat’. The proposed new electrode combined with a portable Raman spectrometer could be useful in the identifying products or intermediates during electrochemical synthesis or electrochemical catalysis in in situ electrochemical SERS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Tong L  Zhu T  Liu Z 《Chemical Society reviews》2011,40(3):1296-1304
Surface-enhanced Raman scattering (SERS) has been intensively explored both in theory and applications and has been widely used in chemistry, physics and biology for decades. A variety of SERS substrates have been developed in order to investigate the mechanisms behind, which give rise to the enormous enhancement even enabling single molecule detection. The Raman enhancement, which involves an electromagnetic enhancement (EM) and a chemical enhancement (CM), reflects both the physical principle of light/metal interactions and the molecule/metal interactions. In this tutorial review, we focus on the EM enhancement of SERS active substrates made of colloidal gold nanoparticles (GNPs), varying from self-assembled arrays down to single particles, for the purpose of investigating the EM coupling effect and probing the distribution of the induced electric field of single GNPs.  相似文献   

17.
Single molecule analysis by surfaced-enhanced Raman scattering   总被引:1,自引:0,他引:1  
Our main objective in this tutorial review is to provide insight into some of the questions surrounding single molecule detection (SMD) using surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS). Discovered thirty years ago, SERS is now a powerful analytical tool, strongly tied to plasmonics, a field that encompasses and profits from the optical enhancement found in nanostructures that support localized plasmon excitations. The spectrum of the single molecule carries the quantum fingerprints of the system modulated by the molecule-nanostructure interactions and the electronic resonances that may result under laser excitation. This information is embedded in vibrational band parameters. The dynamics and the molecular environment will affect the bandwidth of the observed Raman bands. In addition, the localized surface plasmon resonances (LSPR) empower the nanostructure with a number of optical properties that will also leave their mark on the observed inelastic scattering process. Therefore, controlling size, shape and the formation of the aggregation state (or fractality) of certain metallic nanostructures becomes a main task for experimental SERS/SERRS. This molecule-nanostructure coupling may, inevitably, lead to spectral fluctuations, increase photobleaching or photochemistry. An attempt is made here to guide the interpretation of this wealth of information when approaching the single molecule regime.  相似文献   

18.
Surface‐enhanced Raman spectroscopy (SERS) has evolved from an esoteric physical phenomenon to a robust and effective analytical method recently. The need of addressing both the field enhancement and the extinction of nanoparticle suspensions, however, has been underappreciated despite its substantive impact on the sensing performance. A systematic experimental investigation of SERS enhancement and attenuation is performed in suspensions of gold nanostars, which exhibit a markedly different behavior in relation to conventional nanoparticles. The relationship is elucidated between the SERS enhancement and the localized surface plasmon resonance band, and the effect of the concentration of the gold nanostars on the signal propagation is investigated. It is shown that an optimal concentration of gold nanostars exists to maximize the enhancement factor (EF), and the maximum EF occurs when the LSPR band is blue‐shifted from the excitation wavelength rather than at the on‐resonance position.  相似文献   

19.
Anisotropic noble‐metal structures are attracting increasing attention because of interesting size‐ and shape‐dependent properties and have emerging applications in the fields of optics and catalysis. However, it remains a significant challenge to overcome chemical contributions and acquire molecular insight into the relationship between Raman enhancement and photocatalytic activity. This study gives visualized experimental evidence of the anisotropic spatial distribution of Raman signals and photocatalytic activity at the level of single nanometer‐thin Au microtriangles and microhexagons. Theoretical simulations indicate an anisotropic spatial distribution and sharpness‐dependent strength of the electric‐field enhancement. Analysis by using statistical surface‐enhanced Raman scattering (SERS) supports this view, that is, Raman enhancement is on the order of corner>edge>face for a single microplate, but SERS measurements at different depths of focus also imply a concentration‐dependent feature of SERS signals, especially at the corners and edges. Similarly, the SERS signals of product molecules in plasmonic photocatalysis also exhibit asymmetrical strengths at different corners of the same microplate. However, by examining the variations in the relative intensities of the SERS peaks, the difference in the photocatalytic activities at the corners, edges, and faces has been successfully calculated and is highly consistent with electric‐field simulations, thus indicating that an increased number of molecules adsorbed at specific sites does not necessarily lead to a higher conversion ratio in noble‐metal photocatalysis. Our strategy weakens the assumed impact of plasmonic local heating and, to a certain extent, excludes the influence of concentration effects and chemical contributions in noble‐metal photocatalysis, thus clearly profiling plasmon‐related characteristics. This study also promises a new research direction to understand the enhancement mechanism of SERS‐active structures.  相似文献   

20.
Summary: Surface‐enhanced Raman scattering (SERS)‐active substrates with high enhancement were prepared by an in situ reduction method. Novel silver/poly(vinyl alcohol) (PVA) nanocomposite films were obtained, in which the silver nitrate, poly(γ‐glutamic acid) (PGA), and PVA acted as precursor, stabilizer, and polyol reducant, respectively. The UV‐visible spectra of the as‐fabricated films showed that the surface plasmon resonance (SPR) absorption band was narrow and of a stronger intensity, which indicates that the Ag nanoparticle size distribution on the substrate was highly uniform. This finding was further confirmed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and field‐emission scanning electron microscope (FE‐SEM) measurements. It was found that a PGA‐stabilized PVA nanocomposite film revealed the presence of well‐dispersed spherical silver nanoparticles with an average diameter of 90 nm. The new substrate presents high SERS enhancement and the enhanced factor is estimated to be 106 for the detection of benzoic acid.

The Raman scattering enhancement factor for the Raman spectra of benzoic acid on the various nanocomposite films.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号