首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The global pathogen Mycobacterium tuberculosis and other species in the suborder Corynebacterineae possess a distinctive outer membrane called the mycomembrane (MM). The MM is composed of mycolic acids, which are either covalently linked to an underlying arabinogalactan layer or incorporated into trehalose glycolipids that associate with the MM non‐covalently. These structures are generated through a process called mycolylation, which is central to mycobacterial physiology and pathogenesis and is an important target for tuberculosis drug development. Current approaches to investigating mycolylation rely on arduous analytical methods that occur outside the context of a whole cell. Herein, we describe mycobacteria‐specific chemical reporters that can selectively probe either covalent arabinogalactan mycolates or non‐covalent trehalose mycolates in live mycobacteria. These probes, in conjunction with bioorthogonal chemistry, enable selective in situ detection of the major MM components.  相似文献   

2.
The general lack of permeability of small molecules observed for Mycobacterium tuberculosis (Mtb) is most ascribed to its unique cell envelope. More specifically, the outer mycomembrane is hypothesized to be the principal determinant for access of antibiotics to their molecular targets. We describe a novel assay that combines metabolic tagging of the peptidoglycan, which sits directly beneath the mycomembrane, click chemistry of test molecules, and a fluorescent labeling chase step, to measure the permeation of small molecules. We showed that the assay workflow was robust and compatible with high-throughput analysis in mycobacteria by testing a small panel of azide-tagged molecules. The general trend is similar across the two types of mycobacteria with some notable exceptions. We anticipate that this assay platform will lay the foundation for medicinal chemistry efforts to understand and improve uptake of both existing drugs and newly-discovered compounds into mycobacteria.  相似文献   

3.
The spread of antibiotic resistance is a major challenge for the treatment of Mycobacterium tuberculosis infections. In addition, the efficacy of drugs is often limited by the restricted permeability of the mycomembrane. Frontline antibiotics inhibit mycomembrane biosynthesis, leading to rapid cell death. Inspired by this mechanism, we exploited β‐lactones as putative mycolic acid mimics to block serine hydrolases involved in their biosynthesis. Among a collection of β‐lactones, we found one hit with potent anti‐mycobacterial and bactericidal activity. Chemical proteomics using an alkynylated probe identified Pks13 and Ag85 serine hydrolases as major targets. Validation through enzyme assays and customized 13C metabolite profiling showed that both targets are functionally impaired by the β‐lactone. Co‐administration with front‐line antibiotics enhanced the potency against M. tuberculosis by more than 100‐fold, thus demonstrating the therapeutic potential of targeting mycomembrane biosynthesis serine hydrolases.  相似文献   

4.
Increasing the speed, specificity, sensitivity, and accessibility of mycobacteria detection tools are important challenges for tuberculosis (TB) research and diagnosis. In this regard, previously reported fluorogenic trehalose analogues have shown potential, but their green-emitting dyes may limit sensitivity and applications in complex settings. Here, we describe a trehalose-based fluorogenic probe featuring a molecular rotor turn-on fluorophore with bright far-red emission (RMR-Tre). RMR-Tre, which exploits the unique biosynthetic enzymes and environment of the mycobacterial outer membrane to achieve fluorescence activation, enables fast, no-wash, low-background fluorescence detection of live mycobacteria. Aided by the red-shifted molecular rotor fluorophore, RMR-Tre exhibited up to a 100-fold enhancement in M. tuberculosis labeling compared to existing fluorogenic trehalose probes. We show that RMR-Tre reports on M. tuberculosis drug resistance in a facile assay, demonstrating its potential as a TB diagnostic tool.  相似文献   

5.
In Mycobacterium tuberculosis, mycolic acids and their glycerol, glucose, and trehalose esters (“cord factor”) form the main part of the mycomembrane. Despite their first isolation almost a century ago, full stereochemical evaluation is lacking, as is a scalable synthesis required for accurate immunological, including vaccination, studies. Herein, we report an efficient, convergent, gram‐scale synthesis of four stereo‐isomers of a mycolic acid and its glucose ester. Binding to the antigen presenting protein CD1b and T cell activation studies are used to confirm the antigenicity of the synthetic material. The absolute stereochemistry of the syn‐methoxy methyl moiety in natural material is evaluated by comparing its optical rotation with that of synthetic material.  相似文献   

6.
Lipids of the plasma membrane participate in a variety of biological processes, and methods to probe their function and cellular location are essential to understanding biochemical mechanisms. Previous reports have established that phosphocholine‐containing lipids can be labeled by alkyne groups through metabolic incorporation. Herein, we have tested alkyne, azide and ketone‐containing derivatives of choline as metabolic labels of choline‐containing lipids in cells. We also show that 17‐octadecynoic acid can be used as a complementary metabolic label for lipid acyl chains. We provide methods for the synthesis of cyanine‐based dyes that are reactive with alkyne, azide and ketone metabolic labels. Using an improved method for fluorophore conjugation to azide or alkyne‐modified lipids by Cu(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC), we apply this methodology in cells. Lipid‐labeled cell membranes were then interrogated using flow cytometry and fluorescence microscopy. Furthermore, we explored the utility of this labeling strategy for use in live cell experiments. We demonstrate measurements of lipid dynamics (lateral mobility) by fluorescence photobleaching recovery (FPR). In addition, we show that adhesion of cells to specific surfaces can be accomplished by chemically linking membrane lipids to a functionalized surface. The strategies described provide robust methods for introducing bioorthogonal labels into native lipids.  相似文献   

7.
Tuberculosis (TB), which affects primarily the lungs (pulmonary TB) apart from other vital organs, is a life‐threatening chronic deadliest infectious disease caused by members of Mycobacterium tuberculosis (MTB) complex and mainly by MTB itself. The emergence of MTB new virulent forms that are resistant to some or all first‐line and second‐line anti‐TB agents, including multidrug‐resistant (MDR), extensively drug‐resistant, and totally drug‐resistant strains has further aggravated the spread of this disease and was increased up to an alarming level in the recent decades. More than ever, it is imperative to develop novel, high effective, and fast acting anti‐TB drugs to prevent the spread of TB, particularly in its hard‐to‐kill MDR‐TB, extensively drug‐resistant‐TB, and totally drug‐resistant‐TB strains. In recent years, numerous compounds have been synthesized for this purpose, but only a handful of compounds have entered human trials after the discovery of rifampicin, reflecting the inherent difficulties of developing new anti‐TB agents. Despite of bedaquiline and delamanid have received approval from many countries for treatment of MDR‐TB infected patients, both drugs are associated with serious side effects and are only recommended for those MDR‐TB patients without other treatment options. All these aforementioned facts make it an urgent need to develop novel drugs. Quinoline‐based derivatives including quinolones ex biological activities, and some of them displayed excellent in vitro and in vivo activities against MDR‐TB. This review outlines the recent developments of quinoline‐based derivatives with potential activity against MDR‐TB as well as the structure–activity relationship.  相似文献   

8.
This work develops a site‐specific duplexed luminescence resonance energy transfer system on cell surface for simultaneous imaging of two kinds of monosaccharides on a specific protein by single near‐infrared excitation. The single excitation‐duplexed imaging system utilizes aptamer modified upconversion luminescent nanoparticles as an energy donor to target the protein, and two fluorescent dye acceptors to tag two kinds of cell surface monosaccharides by a dual metabolic labeling technique. Upon excitation at 980 nm, only the dyes linked to protein‐specific glycans can be lit up by the donor by two parallel energy transfer processes, for in situ duplexed imaging of glycoforms on specific protein. Using MUC1 as the model, this strategy can visualize distinct glycoforms of MUC1 on various cell types and quantitatively track terminal monosaccharide pattern. This approach provides a versatile platform for profiling protein‐specific glycoforms, thus contributing to the study of the regulation mechanisms of protein functions by glycosylation.  相似文献   

9.
Much of the physiology of cells is controlled by the spatial organization of the plasma membrane and the glycosylation patterns of its components, however, studying the distribution, size, and composition of these components remains challenging. A bioorthogonal chemical reporter strategy was used for the efficient and specific labeling of membrane‐associated glycoconjugates with modified monosaccharide precursors and organic fluorophores. Super‐resolution fluorescence imaging was used to visualize plasma membrane glycans with single‐molecule sensitivity. Our results demonstrate a homogeneous distribution of N‐acetylmannosamine (ManNAc)‐, N‐acetylgalactosamine (GalNAc)‐, and O‐linked N‐acetylglucosamine (O‐GlcNAc)‐modified plasma membrane proteins in different cell lines with densities of several million glycans on each cell surface.  相似文献   

10.
Although it has been well known that dynamic changes in glycosylation are associated with tumor progression, it remains challenging to selectively visualize the cancer glycome in vivo. Herein, a strategy for the targeted imaging of tumor‐associated glycans by using ligand‐targeted liposomes encapsulating azidosugars is described. The intravenously injected liposomal nanoparticles selectively bound to the cancer‐cell‐specific receptors and installed azides into the melanoma glycans in a xenograft mouse model in a tissue‐specific manner. Subsequently, a copper‐free click reaction was performed in vivo to chemoselectively conjugate the azides with a near‐infrared fluorescent dye. The glycosylation dynamics during tumor growth were monitored by in vivo fluorescence imaging. Furthermore, the newly synthesized sialylated glycoproteins were enriched during tumor growth and identified by glycoproteomics. Compared with the labeling methods using free azidosugars, this method offers improved labeling efficiency and high specificity and should facilitate the elucidation of the functional role of glycans in cancer biology.  相似文献   

11.
12.
欧伟  邱春天  苏陈良 《催化学报》2022,43(4):956-970
稳定氘同位素因其安全、易控制、廉价易得等优势而被广泛应用于探究有机反应机理和揭示药物及其代谢物的吸收、分布、代谢和排泄过程.此外,氘标记药物也被称为重氢药、重药,即把药物分子上处于代谢位点的一个或多个碳氢键(C-H)用碳氘键(C-D)替代获得的新药,以延长药物代谢周期、减少进入血液前的代谢、减少有毒代谢物产生,从而降低给药剂量、提高安全性以及获得更佳的疗效.2017年4月,第一例氘代新药,氘代四苯喹嗪(海外商品名Austedo,国内商品名:安泰坦)被美国食品药品监督管理局批准,氘代新药市场被彻底激活.临床数据显示,丁苯那嗪原药具有严重的毒副作用,19%的病人使用后表现出抑郁病症,严重者甚至有自杀倾向;氘代丁苯那嗪相对于原药,代谢动力学特征明显改善,毒副作用显著降低.目前,国内外已有多家知名药企(如BMS,Concert,Teva,苏州泽璟生物制药以及成都海创等)布局氘代新药研发.2021年6月,中国国家药品监督管理局正式批准苯磺酸多纳非尼片(商品名:泽普生),用于治疗既往未接受过全身系统性治疗的不可切除肝细胞癌患者.氘代药物的蓬勃发展使得对其精准合成提出了更高的要求和更强烈的需求.氢氘交换等传统方法由于反应条件苛刻、氘源昂贵、氘代个数和位点难以精准控制等限制,难以满足新时代氘代药物的发展需要.近年,化学家开始致力于开发温和、精准氘代新方法,其中,光或电驱动的温和、精准氘标记方法引起了广泛关注.本综述着重总结近五年光/电驱动的温和、精准的氘代方法的研究进展.基于氘原子引入的反应模式分为以下三种类型.(1)氘原子转移策略:以光/电催化单电子转移或者氢原子转移方式生成自由基中间体R?;随后,R?与氘原子转移试剂(由硫醇和重水原位制得)反应,得到相应的氘代产物R-D.利用该策略,目前已发展了羧酸、卤代烃、硫醚(醇)等的去官能化氘代反应以及硅烷、叔胺、醛基等的氢氘交换反应.(2)氘原子攫取策略:以光/电催化单电子转移、氢原子转移或者能量转移方式生成自由基R?中间体,一方面,以产物碳氘键键能大于溶剂碳氘键键能为驱动力,使R?直接从氘代溶剂中攫取氘原子制得相应的氘代产物R-D;另一方面,利用光/电催化强驱动力,使R?再次获得一个电子形成相应负离子,从而顺利从重水中攫氘,制得相应的氘代产物R-D.利用该策略,目前已开发了羧酸、重氮、卤代物等的去官能化氘代反应,以及亚胺的加氘还原反应.(3)重水分解策略:基于光/电催化水分解制氢原理,以光或电为驱动力分解重水,使其产生高活性氘物种,原位耦合还原氘代反应.利用该策略,目前已开发了以重水为氘源的卤代物,不饱和官能团(包括烯烃、炔烃、亚胺和芳基酮等)等的氘代还原反应以及伯、仲胺的氘甲基化反应.本综述归纳了近年来光或电催化驱动的温和、精准氘代方法研究进展.在此基础上结合课题组在该领域的研究经历,分析了药物和精细化学品精准氘代面临的关键挑战和重要机遇,包括:发展温和、精准的不对称催化氘代方法用于制备手性氘代药物;针对复杂药物多个代谢位点,实现精准、可控氘代,从而更有效调节药物代谢动力学和代谢产物.此外,光合成、电合成迅猛发展也将为氘代精细化学品和药物光、电催化合成带来新的机遇.  相似文献   

13.
Coupling the genetic code expansion technique with bioorthogonal reactions enables precise control over the conjugation site as well as the choice of fluorescent probes during protein labeling. However, the advantages of this strategy over bulky and rigid fluorescent proteins (FPs) remain to be fully explored. Here we applied site‐specific bioorthogonal labeling on anthrax lethal factor (LF) to visualize its membrane translocation inside live cells. In contrast to the previously reported FP tags that significantly perturbed LF’s membrane trafficking, our precisely and quantitatively labeled LF exhibited an endocytic activity comparable to wild‐type LF. This allowed time‐lapse imaging of LF’s natural translocation process from host cell membrane to cytosol, which revealed molecular details of its virulence mechanism. Our strategy is generally applicable for monitoring intracellular protein membrane translocation that is difficult to access using conventional protein labeling methodologies.  相似文献   

14.
15.
Protein degradation is a regulatory process essential to cell viability and its dysfunction is implicated in many diseases, such as aging and neurodegeneration. In this report, stimulated Raman scattering microscopy coupled with metabolic labeling with 13C‐phenylalanine is used to visualize protein degradation in living cells with subcellular resolution. We choose the ring breathing modes of endogenous 12C‐phenylalanine and incorporated 13C‐phenylalanine as protein markers for the original and nascent proteomes, respectively, and the decay of the former wasquantified through 12C/(12C+13C) ratio maps. We demonstrate time‐dependent imaging of proteomic degradation in mammalian cells under steady‐state conditions and various perturbations, including oxidative stress, cell differentiation, and huntingtin protein aggregation.  相似文献   

16.
17.
Chitosan‐based nanocarriers (ChNCs) are considered suitable drug carriers due to their ability to encapsulate a variety of drugs and cross biological barriers to deliver the cargo to their target site. Fluorescein isothiocyanate‐labeled chitosan‐based NCs (FITC@ChNCs) are used extensively in biomedical and pharmacological applications. The main advantage of using FITC@ChNCs consists of the ability to track their fate both intra and extracellularly. This journey is strictly dependent on the physico‐chemical properties of the carrier and the cell types under investigation. Other applications make use of fluorescent ChNCs in cell labeling for the detection of disorders in vivo and controlling of living cells in situ. This review describes the use of FITC@ChNCs in the various applications with a focus on understanding their usefulness in labeled drug‐delivery systems.  相似文献   

18.
Pathogenesis hallmarks for tuberculosis (TB) are the Mycobacterium tuberculosis (Mtb) escape from phagolysosomal destruction and limited drug delivery into infected cells. Several nanomaterials can be entrapped in lysosomes, but the development of functional nanomaterials to promote phagolysosomal Mtb clearance remains a big challenge. Here, we report on the bactericidal effects of selenium nanoparticles (Se NPs) against Mtb and further introduce a novel nanomaterial‐assisted anti‐TB strategy manipulating Ison@Man‐Se NPs for synergistic drug‐induced and phagolysosomal destruction of Mtb. Ison@Man‐Se NPs preferentially entered macrophages and accumulated in lysosomes releasing Isoniazid. Surprisingly, Ison@Man‐Se/Man‐Se NPs further promoted the fusion of Mtb into lysosomes for synergistic lysosomal and Isoniazid destruction of Mtb. Concurrently, Ison@Man‐Se/Man‐Se NPs also induced autophagy sequestration of Mtb, evolving into lysosome‐associated autophagosomal Mtb degradation linked to ROS‐mitochondrial and PI3K/Akt/mTOR signaling pathways. This novel nanomaterial‐assisted anti‐TB strategy manipulating antimicrobial immunity and Mtb clearance may potentially serve in more effective therapeutics against TB and drug‐resistant TB.  相似文献   

19.
The emergence of multidrug resistant varieties of Mycobacterium tuberculosis has led to a search for novel drug targets. We have performed an insilico comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen M. tuberculosis. Enzymes from the biochemical pathways of M. tuberculosis from the KEGG metabolic pathway database were compared with proteins from the host H. sapiens, by performing a BLASTp search against the non-redundant database restricted to the H. sapiens subset. The e-value threshold cutoff was set to 0.005. Enzymes, which do not show similarity to any of the host proteins, below this threshold, were filtered out as potential drug targets. We have identified six pathways unique to the pathogen M. tuberculosis when compared to the host H. sapiens. Potential drug targets from these pathways could be useful for the discovery of broad spectrum drugs. Potential drug targets were also identified from pathways related to lipid metabolism, carbohydrate metabolism, amino acid metabolism, energy metabolism, vitamin and cofactor biosynthetic pathways and nucleotide metabolism. Of the 185 distinct targets identified from these pathways, many are in various stages of progress at the TB Structural Genomics Consortium. However, 67 of our targets are new and can be considered for rational drug design. As a case study, we have built a homology model of one of the potential drug targets MurD ligase using WHAT IF software. The model could be further explored for insilico docking studies with suitable inhibitors. The study was successful in listing out potential drug targets from the M. tuberculosis proteome involved in vital aspects of the pathogen's metabolism, persistence, virulence and cell wall biosynthesis. This systematic evaluation of metabolic pathways of host and pathogen through reliable and conventional bioinformatic methods can be extended to other pathogens of clinical interest.  相似文献   

20.
The metabolic labeling of nucleic acids in living cells is highly desirable to track the dynamics of nucleic acid metabolism in real-time and has the potential to provide novel insights into cellular biology as well as pathogen-host interactions. Catalyst-free inverse electron demand Diels–Alder reactions (iEDDA) with nucleosides carrying highly reactive moieties such as axial 2-trans-cyclooctene (2TCOa) would be an ideal tool to allow intracellular labeling of DNA. However, cellular kinase phosphorylation of the modified nucleosides is needed after cellular uptake as triphosphates are not membrane permeable. Unfortunately, the narrow substrate window of most endogenous kinases limits the use of highly reactive moieties. Here, we apply our TriPPPro (triphosphate pronucleotide) approach to directly deliver a highly reactive 2TCOa-modified 2′-deoxycytidine triphosphate reporter into living cells. We show that this nucleoside triphosphate is metabolically incorporated into de novo synthesized cellular and viral DNA and can be labeled with highly reactive and cell-permeable fluorescent dye-tetrazine conjugates via iEDDA to visualize DNA in living cells directly. Thus, we present the first comprehensive method for live-cell imaging of cellular and viral nucleic acids using a two-step labeling approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号