首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An advanced light‐induced avenue to monodisperse sequence‐defined linear macromolecules via a unique photochemical protocol is presented that does not require any protection‐group chemistry. Starting from a symmetrical core unit, precision macromolecules with molecular weights up to 6257.10 g mol?1 are obtained via a two‐monomer system: a monomer unit carrying a pyrene functionalized visible light responsive tetrazole and a photo‐caged UV responsive diene, enabling an iterative approach for chain growth; and a monomer unit equipped with a carboxylic acid and a fumarate. Both light‐induced chain growth reactions are carried out in a λ‐orthogonal fashion, exciting the respective photosensitive group selectively and thus avoiding protecting chemistry. Characterization of each sequence‐defined chain (size‐exclusion chromatography (SEC), high‐resolution electrospray ionization mass spectrometry (ESI‐MS), and NMR spectroscopy), confirms the precision nature of the macromolecules.  相似文献   

2.
The synthesis of multi‐arm poly([R]‐3‐hydroxybutyrate) (PHB)‐based triblock copolymers (poly([R]‐3‐hydroxybutyrate)‐b‐poly(N‐isopropylacrylamide)‐b‐[[poly(methyl ether methacrylate)‐g‐poly(ethylene glycol)]‐co‐[poly(methacrylate)‐g‐poly(propylene glycol)]], PHB‐b‐PNIPAAM‐b‐(PPEGMEMA‐co‐PPPGMA), and their subsequent self‐assembly into thermo‐responsive hydrogels is described. Atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide (NIPAAM) followed by poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) and poly(propylene glycol) methacrylate (PPGMA) was achieved from bromoesterified multi‐arm PHB macroinitiators. The composition of the resulting copolymers was investigated by 1H and 13C J‐MOD NMR spectroscopy as well as size‐exclusion chromatography (SEC), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The copolymers featuring different architectures and distinct hydrophilic/hydrophobic contents were found to self‐assemble into thermo‐responsive gels in aqueous solution. Rheological studies indicated that the linear one‐arm PHB‐based copolymer tend to form a micellar solution, whereas the two‐ and four‐arm PHB‐based copolymers afforded gels with enhanced mechanical properties and solid‐like behavior. These investigations are the first to correlate the gelation properties to the arm number of a PHB‐based copolymer. All copolymers revealed a double thermo‐responsive behavior due to the NIPAAM and PPGMA blocks, thus allowing first the copolymer self‐assembly at room temperature, and then the delivery of a drug at body temperature (37 °C). The non‐significant toxic response of the gels, as assessed by the cell viability of the CCD‐112CoN human fibroblast cell line with different concentrations of the triblock copolymers ranging from 0.03 to 1 mg mL?1, suggest that these PHB‐based thermo‐responsive gels are promising candidate biomaterials for drug‐delivery applications.  相似文献   

3.
Fandong Meng  Jing Sun  Zhibo Li 《中国化学》2019,37(11):1137-1141
Hydrogels cross‐linked with metal ions (e.g., Ca2+) represent a promising class of bioinspired materials for a wide range of biomedical applications. Herein, we report a facile approach to obtain cross‐linked stimuli‐responsive supramolecular polypeptide hydrogels. The hydrogel is prepared by statistical/block copoly(L‐glutamate)s based copolymers cross‐linked with calcium ions. The incorporation of both oligo(ethylene glycol) (OEG) and glutamic acid residues in the polymer offers thermal‐responsive property and cooperative binding sites with Ca2+ ions simultaneously. We present a systematic study of the influence of calcium ions on the gelation behaviors of these copolymers. It is observed that the addition of calcium ions induces the formation of hydrogels. Increasing the concentration of Ca2+ ions can significantly enhance the gelation ability of the samples as indicated by increased storage modulus and decreased sol‐to‐gel transition temperature (Tsol‐gel). We further demonstrate that the influence of monomer distribution on the gelation behavior is trivial, which is possibly due to similar morphology of the self‐assemblies. The obtained hydrogels exhibit thermal‐responsive gelation behavior mediated by ion cross‐linking, which enables them to be ideal smart hydrogel system for many applications.  相似文献   

4.
A triphosphaazatriangulene (H3L) was synthesized through an intramolecular triple phospha‐Friedel–Crafts reaction. The H3L triangulene contains three phosphinate groups and an extended π‐conjugated framework, which enables the stimuli‐responsive reversible transformation of [Cu(HL)(DMSO)?(MeOH)]n, a 3D‐MOF that exhibits reversible sorption characteristics, into (H3L?0.5 [Cu2(OH)4?6 H2O] ?4 H2O), a 1D‐columnar assembled proton‐conducting material. The hydrophilic nature of the latter resulted in a proton conductivity of 5.5×10?3 S cm?1 at 95 % relative humidity and 60 °C.  相似文献   

5.
The parallel synthesis and properties of a library of photoswitchable surfactants comprising a hydrophobic butylazobenzene tail‐group and a hydrophilic carbohydrate head‐group, including the first surfactants to exhibit dual photo‐ and pH‐responsive behavior, is reported. This new generation of surfactants shows varying micelle morphologies, photocontrollable surface tension, and pH‐induced aggregation and adsorption.  相似文献   

6.
An ionic thermo‐responsive copolymer with multiple lower critical solution temperatures (multi‐LCSTs) has been developed, and the multi‐LCSTs were easily changeable according to the various counter anion types. The multi‐LCST values were achieved by introducing an ionic segment with an imidazolium moiety within the p‐NIPAAm polymer chain to produce poly(NIPAAm‐co‐BVIm) copolymers, [p‐NIBIm]+[Br]?, and changing the counter anion type to produce [p‐NIBIm]+[X]? (X = Cl, AcO, HCO3, BF4, CF3SO3, PF6, SbF6). The as‐prepared temperature‐responsive copolymers were physicochemically characterized via proton nuclear magnetic resonance spectroscopy (1H‐NMR), Fourier‐transform infrared, X‐ray photoelectron spectroscopy, and thermogravimetric analysis. Their various LCST values, micelle sizes, and surface charges were determined using an Ultraviolet‐visible spectrophotometer and a Zeta (ξ) sizer, which were fitted with temperature and stirring control. The copolymers showed a broad LCST spectrum between 39°C and 52°C. The Zeta (ξ) potential values at a pH = 7 decreased from about +9.7 for [p‐NIBIm]+[X]? (X = Cl ≈ Br) to about +2.0 mV for [p‐NIBIm]+[X]? (X = PF6 ≈ SbF6). The micelle size (or volume) of the copolymers with different anionic species gradually increased from 181.2 nm (or 2.49 × 10?17 cm?3) for [p‐NIBIm]+[Br]? to 229.2 nm (or 5.04 × 10?17 cm?3) for [p‐NIBIm]+[CF3SO3]?, showing a clear effect of the anion on the micelle size (or volume) at a constant temperature, such as body temperature. The fact that the most important physicochemical properties for the thermo‐responsive copolymers, such as the LCST value, micelle size (or volume), and surface charge, could be easily controlled only through the anion exchange suggests these are highly applicable as ionic thermo‐responsive copolymers in a drug (or gene, protein) delivery system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Tetrafunctional porphyrins‐containing trithiocarbonate groups were synthesized by an ordinary esterification method. This tetrafunctional porphyrin (TPP‐CTA) could be used as a chain transfer agent in a controlled reversible addition‐fragmentation chain transfer (RAFT) radical polymerization to prepare well‐defined 4‐arm star‐shaped polymers. N,N‐Diethylacrylamide was polymerized using TPP‐CTA in 1,4‐dioxane. Poly(N,N‐diethylacrylamide) (PDEA) is known to be a thermo‐responsive polymer, and exhibits a lower critical solution temperature (LCST) in water. The star‐shaped PDEA polymer (TPP‐PDEA) was therefore also thermo‐responsive, as expected. The LCST of this polymer depended on its concentration in water, as confirmed by turbidity, dynamic light scattering (DLS), static light scattering (SLS), and 1H NMR measurements. The porphyrin cores were compartmentalized in PDEA shells in aqueous media. Below the LCST, the fluorescence intensity of TPP‐PDEA was about six times larger than that of a water‐soluble low molecular weight porphyrin compound (TSPP), whose fluorescence intensity was independent of temperature. Above the LCST, the fluorescence intensity of TPP‐PDEA decreased, while the intensity was about three times higher than that of TSPP. These observations suggested that interpolymer aggregation occurred due to the hydrophobic interactions of the dehydrated PDEA arm chains above the LCST, with self‐quenching of the porphyrin moieties arising from these interactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

8.
For the development of a liposome that takes in and out a drug in response to stimuli, 2,4‐diaminoxylose (Xyl), which allows stimuli‐responsive conformational switches between 4C1 and 1C4, was incorporated into a lipid structure: Xyl derivatives with C8 and C16 methylene chains at the 1,3‐positions (C8Xyl and C16Xyl) were synthesized. 1H NMR spectroscopy indicates that the addition of Zn2+ and then H+ induces conformational switches from the chair (4C1) to the reverse chair (1C4) and 1C4‐to‐4C1, respectively, at Xyl; this leads to transformation of the lipids between linear and bent structures. Osmotic pressure and electron microscopy studies demonstrate that C8Xyl in water forms spherical solid aggregates (C8Xyl?Zn), which are converted into liposomes (C8Xyl+Zn) upon the addition of Zn2+, and C16Xyl forms liposomes regardless of the presence of Zn2+. The aggregates of C8Xyl±Zn incorporated a fluorophore and only C8Xyl+Zn released the content upon the addition of HCl. This study shows that Xyl could be a stimuli‐responsive component of a liposome.  相似文献   

9.
《化学:亚洲杂志》2017,12(9):968-972
Hybridization of a self‐assembled, spherical complex with oligosaccharides containing Lewis X, a functional trisaccharide displayed on various cell surfaces, yielded well‐defined glycoclusters. The self‐assembled glycoclusters exhibited homophilic hyper‐assembly in aqueous solution in a Ca2+‐dependent manner through specific carbohydrate–carbohydrate interactions, offering a structural scaffold for functional biomimetic systems.  相似文献   

10.
A N‐2‐phenylethyl‐substituted 1,4‐dihydropyridine derivative (NDHP) containing 5,5‐dimethylcyclohexane‐1,3‐dione and naphthylethylene was designed and synthesized. NDHP acts as a multifunctional fluorescent sensor in dual phases. The crystal structure analysis confirms that the NDHP molecules have highly twisted conformations. The twisted conformation results in aggregation‐induced emission properties and solid‐state emission, by restricting the intramolecular free rotation in the aggregated or solid state. In the solid state, NDHP exhibits reversible mechanochromic properties as a result of the transition between the amorphous and crystalline states. NDHP also exhibits a rare phenomenon of acid‐fumed solid‐state emission enhancement owing to the change in packing mode from a zigzag arrangement to J‐aggregation. The solid‐state stimuli‐responsive fluorescence switching is applied to realize a rewritable optical recording media and a multiple output combinational logic system. In solution, NDHP shows a selective fluorescence response for environmentally harmful Hg2+, with a limit of detection of 2.7 nm . This results from the “turn‐on” responsive behavior owing to the Hg2+‐triggered aggregation of the NDHP molecules. NDHP is also used in the imaging of intracellular Hg2+ in HeLa cells. These findings provide a feasible and attractive route for developing multifunctional fluorescent sensors for use in dual phases.  相似文献   

11.
A two‐component hydrogelator (16‐A)2‐V2+ , comprising an l ‐alanine‐based amphiphile ( 16‐A ) and a redox‐active viologen based partner ( V2+ ), is reported. The formation the hydrogel depended, not only on the acid‐to‐amine stoichiometric ratio, but on the choice of the l ‐amino acid group and also on the hydrocarbon chain length of the amphiphilic component. The redox responsive property and the electrochemical behavior of this two‐component system were further examined by step‐wise chemical and electrochemical reduction of the viologen nucleus (V2+/V+ and V+/V0). The half‐wave reduction potentials (E1/2) associated with the viologen ring shifted to more negative values with increasing amine component. This indicates that higher extent of salt formation hinders reduction of the viologen moiety. Interestingly, the incorporation of single‐walled carbon nanotubes in the electrochemically irreversible hydrogel (16‐A)2‐V2+ transformed it into a quasi‐reversible electrochemical system.  相似文献   

12.
Carbohydrate‐modified polysiloxanes have been presented several times within the last decade. In this work, a new route to carbohydrate‐segmented polysiloxanes is presented. A series of allyl‐group‐containing bifunctional carbohydrate derivatives was synthesized and reacted with hydrodimethylsilyl‐terminated polysiloxane in hydrosilylation reactions with Speier's catalyst. The carbohydrate monomers and the resulting materials were fully characterized with 1H and 13C NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3814–3822, 2005  相似文献   

13.
A potential real‐time imaging water‐soluble fluorescent polymer ( P3 ) is facilely prepared via one‐pot method. For P3 , tetraphenylethene unit serves as the fluorescent unit, poly(acryloyl ethylene diamine) (a kind of polyelectrolyte) with specific degree of polymerization acts as water‐soluble part. 1H‐NMR, gel permeation chromatography (GPC), UV‐vis spectroscopy, photoluminescence (PL), and confocal laser scanning microscopy are undertaken to characterize the structure and property of P3 . The results of wash‐free cellular imaging show that the signal‐to‐noise ratio is high as the concentration of P3 is 50 μg mL−1. In addition, the pH‐responsive and Cd2+‐responsive are also investigated in this paper. The results coming from pH‐responsive show that P3 solution displays significant fluorescence under near neutral. And the result from the cellular imaging shows that intracellular fluorescence intensity enhances with the augment of concentration of Cd2+, which reveals that P3 can give a hint to resolve the dilemma of traditional fluorescent dyes used as living cellular fluorescent probe.

  相似文献   


14.
We demonstrate herein an all‐optical switch based on stimuli‐responsive and photochromic‐free metal–organic framework (HKUST‐1). Ultrafast near‐infrared laser pulses stimulate a reversible 0.4 eV blue shift of the absorption band with up to 200 s?1 rate due to dehydration and concomitant shrinking of the structure‐forming [Cu2C4O8] cages of HKUST‐1. Such light‐induced switching enables the remote modulation of intensities of photoluminescence of single crystals of HKUST‐1 as well visible radiation passing through the crystal by 2 order of magnitude. This opens up the possibility of utilyzing stimuli‐responsive MOFs for all‐optical data processing devices.  相似文献   

15.
We have recently uncovered a general indium(I)‐catalyzed method for allylations and propargylation of acetals and ketals with a water‐ and air‐stable allyl boronate. By using a more reactive allyl borane, we have successfully extended this methodology to the more challenging C C coupling with ethers. Herein, we report an improved methodology for the indium(I)‐catalyzed allylation of acetals and ethers, through combination of the allyl boronate with a commercially available “hard” Lewis acid, B‐methoxy‐9‐BBN (BBN=borabicyclo[3.3.1]nonane), as an effective co‐catalyst. Significantly, our work highlights for the first time the correlation between the Lewis acidity of “electrophilic” boron‐based compounds and their “nucleophilic” reactivity in Csp3–Csp3 couplings, catalyzed by a “soft” low‐oxidation main group metal. In addition, we also report several applications of these methodologies to the selective synthesis of various carbohydrate derivatives.  相似文献   

16.
In the title compounds, C12H20O6, (I), and C9H16O6, (II), the five‐membered furanose ring adopts a 4T3 conformation and the five‐membered 1,3‐dioxolane ring adopts an E3 conformation. The six‐membered 1,3‐dioxane ring in (I) adopts an almost ideal OC3 conformation. The hydrogen‐bonding patterns for these compounds differ substantially: (I) features just one intramolecular O—H...O hydrogen bond [O...O = 2.933 (3) Å], whereas (II) exhibits, apart from the corresponding intramolecular O—H...O hydrogen bond [O...O = 2.7638 (13) Å], two intermolecular bonds of this type [O...O = 2.7708 (13) and 2.7730 (12) Å]. This study illustrates both the similarity between the conformations of furanose, 1,3‐dioxolane and 1,3‐dioxane rings in analogous isopropylidene‐substituted carbohydrate structures and the only negligible influence of the presence of a 1,3‐dioxane ring on the conformations of furanose and 1,3‐dioxolane rings. In addition, in comparison with reported analogs, replacement of the –CH2OH group at the C1‐furanose position by another group can considerably affect the conformation of the 1,3‐dioxolane ring.  相似文献   

17.
The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water‐soluble carbohydrate receptors (“synthetic lectins”). Both systems show outstanding affinities for derivatives of N‐acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside GlcNAc‐β‐OMe with Ka≈20 000 m ?1, whereas the other one binds an O‐GlcNAcylated peptide with Ka≈70 000 m ?1. These values substantially exceed those usually measured for GlcNAc‐binding lectins. Slow exchange on the NMR timescale enabled structural determinations for several complexes. As expected, the carbohydrate units are sandwiched between the pyrenes, with the alkoxy and NHAc groups emerging at the sides. The high affinity of the GlcNAcyl–peptide complex can be explained by extra‐cavity interactions, raising the possibility of a family of complementary receptors for O‐GlcNAc in different contexts.  相似文献   

18.
We report the synthesis and gradient stimuli‐responsive properties of cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures. A ionic hyperbranched poly(β‐cyclodextrin) (β‐CD) core was firstly synthesized via a convenient “A2+B3” approach. Double‐layered shell architectures, composed of poly(N‐isopropyl acrylamide) (PNIPAm) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) miktoarms as the outermost shell linked to poly(N,N‐diethylaminoethyl methacrylate) (PDEAEMA) homoarms which form the inner shell, were obtained by a sequential atom transfer radical polymerization (ATRP) and parallel click chemistry from the modified hyperbranched poly(β‐CD) macroinitiator. The combined characterization by 1H NMR, 13C NMR, 1H‐29Si heteronuclear multiple‐bond correlation (HMBC), FTIR and size exclusion chromatography/multiangle laser light scattering (SEC/MALLS) confirms the remarkable hyperbranched poly(β‐CD) core and double‐shell miktoarm architectures. The gradient triple‐stimuli‐responsive properties of hyperbranched core‐double‐shell miktoarm architectures and the corresponding mechanisms were investigated by UV–vis spectrophotometer and dynamic light scattering (DLS). Results show that this polymer possesses three‐stage phase transition behaviors. The first‐stage phase transition comes from the deprotonation of PDEAEMA segments at pH 9–10 aqueous solution under room temperature. The confined coil‐globule conformation transition of PNIPAm and PDMAEMA arms gives rise to the second‐stage hysteretic cophase transition between 38 and 44 °C at pH 10. The third‐stage phase transition occurs above 44 °C at pH = 10 attributed to the confined secondary conformation transition of partial PDMAEMA segments. This cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures are expected to solve the problems of inadequate functionalities from core layer and lacking multiresponsiveness for shell layers existing in the dendritic core‐multishell architectures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH‐responsive drug release exploits the pH‐dependent changes in the coordination stoichiometry of iron(III)–3,4‐dihydroxyphenylalanine (DOPA) complexes, which play a major cross‐linking role in mussel byssal threads. Doxorubicin‐loaded polymeric NPs that are based on FeIII–DOPA complexation were thus synthesized with a DOPA‐modified recombinant mussel adhesive protein through a co‐electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the FeIII–DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that FeIII–DOPA complexation can be successfully utilized as a new design principle for pH‐responsive NPs for diverse controlled drug‐delivery applications.  相似文献   

20.
A series of [Au2(nixantphos)2](X)2 (nixantphos=4,6‐bis(diphenylphosphino)‐phenoxazine; X=NO3, 1 ; CF3COO, 2 ; CF3SO3, 3 ; [Au(CN)2], 4 ; and BF4, 5 ) complexes that exhibit intriguing anion‐switchable and stimuli‐responsive luminescent photophysical properties have been synthesized and characterized. Depending on their anions, these complexes display yellow ( 3 ), orange ( 4 and 5 ), and red ( 1 and 2 ) emission colors. They exhibit reversible thermo‐, mechano‐, and vapochromic luminescence changes readily perceivable by the naked eye. Single‐crystal X‐ray studies show that the [Au2(nixantphos)2]2+ cations with short intramolecular Au ??? Au interactions are involved as donors in an infinite N?H ??? X (X=O and N) hydrogen‐bonded chain formation with CF3COO? ( 2 C ) and aurophilically linked [Au(CN)2]? counterions ( 4 C ). Both crystals show thermochromic luminescence; their room temperature red ( 2 C ) and orange ( 4 C ) emission turns into yellow upon cooling to 77 K. They also exhibit reversible mechanochromic luminescence by changing their emission color from red to dark ( 2 C ), and orange to red ( 4 C ). Compounds 1 – 5 also display reversible mechanochromic luminescence, altering their emission colors between orange ( 1 ) or red ( 2 ) to dark, as well as between yellow ( 3 ) or orange ( 4 and 5 ) to red. Detailed photophysical investigations and correlation with solid‐state structural data established the significant role of N?H ??? X interactions in the stimuli‐responsive luminescent behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号