首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the gas‐phase synthesis of stable 20‐electron carbonyl anion complexes of group 3 transition metals, TM(CO)8? (TM=Sc, Y, La), which are studied by mass‐selected infrared (IR) photodissociation spectroscopy. The experimentally observed species, which are the first octacarbonyl anionic complexes of a TM, are identified by comparison of the measured and calculated IR spectra. Quantum chemical calculations show that the molecules have a cubic (Oh) equilibrium geometry and a singlet (1A1g) electronic ground state. The 20‐electron systems TM(CO)8? are energetically stable toward loss of one CO ligand, yielding the 18‐electron complexes TM(CO)7? in the 1A1 electronic ground state; these exhibit a capped octahedral structure with C3v symmetry. Analysis of the electronic structure of TM(CO)8? reveals that there is one occupied valence molecular orbital with a2u symmetry, which is formed only by ligand orbitals without a contribution from the metal atomic orbitals. The adducts of TM(CO)8? fulfill the 18‐electron rule when only those valence electrons that occupy metal–ligand bonding orbitals are considered.  相似文献   

2.
We report the synthesis and spectroscopic characterization of the boron dicarbonyl complex [B(CO)2]?. The bonding situation is analyzed and compared with the aluminum homologue [Al(CO)2]? using state‐of‐the‐art quantum chemical methods.  相似文献   

3.
We report the synthesis and spectroscopic identification of the trisbenzene complexes of strontium and barium M(Bz)3 (M=Sr, Ba) in low‐temperature Ne matrix. Both complexes are characterized by a D3 symmetric structure involving three equivalent η6‐bound benzene ligands and a closed‐shell singlet electronic ground state. The analysis of the electronic structure shows that the complexes exhibit metal–ligand bonds that are typical for transition metal compounds. The chemical bonds can be explained in terms of weak donation from the π MOs of benzene ligands into the vacant (n?1)d AOs of M and strong backdonation from the occupied (n?1)d AO of M into vacant π* MOs of benzene ligands. The metals in these 20‐electron complexes have 18 effective valence electrons, and, thus, fulfill the 18‐electron rule if only the metal–ligand bonding electrons are counted. The results suggest that the heavier alkaline earth atoms exhibit the full bonding scenario of transition metals.  相似文献   

4.
5.
The synthesis of the first terminal Group 9 hydrazido(2‐) complex, Cp*IrN(TMP) ( 6 ) (TMP=2,2,6,6‐tetramethylpiperidine) is reported. Electronic structure and X‐ray diffraction analysis indicate that this complex contains an Ir?N triple bond, similar to Bergman's seminal Cp*Ir(NtBu) imido complex. However, in sharp contrast to Bergman's imido, 6 displays remarkable redox non‐innocent reactivity owing to the presence of the Nβ lone pair. Treatment of 6 with MeI results in electron transfer from Nβ to Ir prior to oxidative addition of MeI to the iridium center. This behavior opens the possibility of carrying out facile oxidative reactions at a formally IrIII metal center through a hydrazido(2?)/isodiazene valence tautomerization.  相似文献   

6.
We present an investigation of isostructural complexes that feature unsupported direct bonds between a formally trivalent lanthanide ion (Dy3+) and either a first‐row (Fe) or a second‐row (Ru) transition metal (TM) ion. The sterically rigid, yet not too bulky ligand PyCp22? (PyCp22?=[2,6‐(CH2C5H3)2C5H3N]2?) facilitates the isolation and characterization of PyCp2Dy?FeCp(CO)2 ( 1 ; d(Dy–Fe)=2.884(2) Å) and PyCp2Dy?RuCp(CO)2 ( 2 ; d(Dy–Ru)=2.9508(5) Å). Computational and spectroscopic studies suggest strong TM→Dy bonding interactions. Both complexes exhibit field‐induced slow magnetic relaxation with effectively identical energy barriers to magnetization reversal. However, in going from Dy?Fe to Dy?Ru bonding, we observed faster magnetic relaxation at a given temperature and larger direct and Raman coefficients, which could be due to differences in the bonding and/or spin–phonon coupling contributions to magnetic relaxation.  相似文献   

7.
8.
Although N‐heterocyclic carbenes have been well‐studied, the simplest aminocarbene, aminomethylene H?C??NH2, has not been spectroscopically identified to date. Herein we report the gas‐phase preparation of aminomethylene by high‐vacuum flash pyrolysis of cyclopropylamine and subsequent trapping of the pyrolysate in an inert argon matrix at 12 K. Aminomethylene was characterized by matching matrix IR and UV/Vis spectroscopic data with ab initio coupled cluster computations. After UV irradiation of the matrix aminomethylene rearranges to its isomer methanimine (formaldimine) H2C=NH. Based on our experimental results and computations aminomethylene has a singlet ground state with a reaction barrier of almost 46 kcal mol?1 to methanimine so that H‐tunneling is excluded.  相似文献   

9.
The complexes OCBeCO3 and COBeCO3 have been isolated in a low‐temperature neon matrix. The more stable isomer OCBeCO3 has a very high C? O stretching mode of 2263 cm?1, which is blue‐shifted by 122 cm?1 with respect to free CO and 79 cm?1 higher than in OCBeO. Bonding analysis of the complexes shows that OCBeO has a stronger OC? BeY bond than OCBeCO3 because it encounters stronger π backdonation. The isomers COBeCO3 and COBeO exhibit red‐shifted C? O stretching modes with respect to free CO. The inverse change of C? O stretching frequency in OC? BeY and CO? BeY is explained with the reversed polarization of the σ and π bonds in CO.  相似文献   

10.
Understanding the maximum bonding ability is very important with the potential both to design new compounds and to broaden chemists' imagination. While the coordination ability of the late transition metals has been richly understood, that of scandium is very poor. In this work, a detailed computational study on the equilibrium geometries, stability and vibrational frequencies of a series of Sc(CO)n (n = 1–7), Sc(CO) and Sc(CO) is reported using density functional theory functionals and the coupled cluster (single‐point) method with 6‐311+G(3df) basis set. It was shown that the obtained sequential and average CO binding energies of Sc(CO)n (n = 4–7), Sc(CO) and Sc(CO) are comparable to those of the experimentally known species, i.e., smaller Sc‐carbonyls (n ≤3) and the analog Ti(CO)7+. Thus, the studied high scandium carbonyls could all be experimentally accessible. In addition, the studied Sc(CO)n generally favor the low‐spin ground state (doublet) structures except ScCO and Sc(CO)3 that are in the quartet states. The previously uncertain spectrum bands were assigned to Sc(CO)4 and Sc(CO)5 in this work. In all, the appreciable stability suggested that the last 18‐electron first‐row transition metal carbonyls, that is, Sc(CO) and Sc(CO), could be accessible in experiment. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
12.
This contribution covers the preparation and characterization of 2,2‐bis(5‐tetrazolyl)propane (5‐DTP) ( 1 ). The bridged bitetrazole is used as a neutral nitrogen‐rich ligand in 3d transition metal(II) based complexes for the first time and can be synthesized via [2+3] cycloaddition from sodium azide and dimethylmalononitrile. The combination with different anions (e.g., perchlorate, nitrate, sulfate, and chloride) yields materials with widely varying physicochemical properties. The obtained coordination compounds were characterized using low‐temperature single‐crystal X‐ray diffraction (except 14 ), IR spectroscopy, elemental analysis, and DTA (except 16 ). The sensitivities toward external stimuli (impact and friction) were determined according to the Bundesamt für Materialforschung und ‐prüfung (BAM) standard methods together with its sensitivities against electrostatic discharge (except 16 ). Complexes 10 and 14 were characterized in laser ignition experiments. For determination of the compounds' deflagration to detonation transition (DDT) capability, hot plate and hot needle tests were performed for the zinc(II) and copper(II) perchlorate complexes.  相似文献   

13.
OsII Phthalocyaninates(2?): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato-(2?)osmate(II) Soluble, blue tetra(n-butyl)ammonium (halo)(carbonyl)phthalocyaninato(2?)osmate(II), (nBu4N)[Os(X)(CO)Pc2?] (X = Cl, Br, I) is obtained by the reaction of [Os(THF)(CO)Pc2?] (THF: tetrahydrofurane) with (nBu4N)X in THF. In the cyclovoltammograms there are three reversible electrode processes at ?1.21 ± 0.01, 0.18 ± 0.04 and 0.65 ± 0.01 V assigned to the three redox pairs Pc2?/Pc3?, OsII/OsIII and Pc2?/Pc3?. In the electronic absorption spectra only the intense B and Q regions are observed at ~ 15800 resp. 27500, 33000 cm?1. The infrared and resonance Raman spectra closely resemble those of other phthalocyaninates(2?) of low valent osmium. In the infrared spectrum v(C? O) is detected at 1896 ± 4 cm?1 and v(Os? X) at 260 (X = Cl), 175 (X = Br) or 143 cm?1 (X = I).  相似文献   

14.
15.
Addition of PR3 (R=Ph or OPh) to [Cu(η2‐Me6C6)2][PF6] results in the formation of [(η6‐Me6C6)Cu(PR3)][PF6], the first copper–arene complexes to feature an unsupported η6 arene interaction. A DFT analysis reveals that the preference for the η6 binding mode is enforced by the steric clash between the methyl groups of the arene ligand and the phenyl rings of the phosphine co‐ligand.  相似文献   

16.
Reaction of 2‐chloro‐1,3,2‐diazaarsolenes and ‐diazaphospholenes with Tl[Co(CO)4] gives instable complexes of type [Co(ER2)(CO)4] which decarbonylated to yield [Co(ER2)(CO)3]. Spectroscopic and X‐ray diffraction studies revealed that the tetracarbonyl complexes can be formulated as ion pair for E = P and as covalent metalla‐arsine for E = As, and the tricarbonyl complexes as carbene‐like species with a formal E=Co double bond. A similar reactivity towards Tl[Co(CO)4] was also inferred for 1,3,2‐diazastibolenes although the products were not isolable and their constitution remained uncertain. Evaluation of structural and computational data suggests that the weak and polarized Co–As bond in [Co(AsR2)(CO)4] can be characterized as an “inverse” M→L donor‐acceptor bond. The computational studies disclosed further η2(EN)‐coordination of the EN2C2 heterocycle as an alternative to the formation of a carbene‐like structure for [Co(ER2)(CO)3]. The η2‐complex is less stable for E = P but close in energy for E = As and more stable than the carbene‐like complex for E = Sb.  相似文献   

17.
Syntheses of the copper and gold complexes [Cu{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] containing the homoleptic carbonyl cations [M{Fe(CO)5}2]+ (M=Cu, Au) are reported. Structural data of the rare, trimetallic Cu2Fe, Ag2Fe and Au2Fe complexes [Cu{Fe(CO)5}2][SbF6], [Ag{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] are also given. The silver and gold cations [M{Fe(CO)5}2]+ (M=Ag, Au) possess a nearly linear Fe-M-Fe’ moiety but the Fe-Cu-Fe’ in [Cu{Fe(CO)5}2][SbF6] exhibits a significant bending angle of 147° due to the strong interaction with the [SbF6] anion. The Fe(CO)5 ligands adopt a distorted square-pyramidal geometry in the cations [M{Fe(CO)5}2]+, with the basal CO groups inclined towards M. The geometry optimization with DFT methods of the cations [M{Fe(CO)5}2]+ (M=Cu, Ag, Au) gives equilibrium structures with linear Fe-M-Fe’ fragments and D2 symmetry for the copper and silver cations and D4d symmetry for the gold cation. There is nearly free rotation of the Fe(CO)5 ligands around the Fe-M-Fe’ axis. The calculated bond dissociation energies for the loss of both Fe(CO)5 ligands from the cations [M{Fe(CO)5}2]+ show the order M=Au (De=137.2 kcal mol−1)>Cu (De=109.0 kcal mol−1)>Ag (De=92.4 kcal mol−1). The QTAIM analysis shows bond paths and bond critical points for the M−Fe linkage but not between M and the CO ligands. The EDA-NOCV calculations suggest that the [Fe(CO)5]→M+←[Fe(CO)5] donation is significantly stronger than the [Fe(CO)5]←M+→[Fe(CO)5] backdonation. Inspection of the pairwise orbital interactions identifies four contributions for the charge donation of the Fe(CO)5 ligands into the vacant (n)s and (n)p AOs of M+ and five components for the backdonation from the occupied (n-1)d AOs of M+ into vacant ligand orbitals.  相似文献   

18.
Reaction of cyclooctatetraene (COT) iron(II) tricarbonyl, [Fe(cot)(CO)3], with one equivalent of K4Ge9 in ethylenediamine (en) yielded the cluster anion [Ge8Fe(CO)3]3? which was crystallographically‐characterized as a [K(2,2,2‐crypt)]+ salt in [K(2,2,2‐crypt)]3[Ge8Fe(CO)3]. The chemically‐reduced organometallic species [Fe(η3‐C8H8)(CO)3]? was also isolated as a side‐product from this reaction as [K(2,2,2‐crypt)][Fe(η3‐C8H8)(CO)3]. Both species were further characterized by EPR and IR spectroscopy and electrospray mass spectrometry. The [Ge8Fe(CO)3]3? cluster anion represents an unprecedented functionalized germanium Zintl anion in which the nine‐atom precursor cluster has lost a vertex, which has been replaced by a transition‐metal moiety.  相似文献   

19.
《化学:亚洲杂志》2017,12(21):2845-2856
The coordination chemistry of a priori weakly σ ‐donating nitroaromatic phosphines is addressed through a series of nitro‐substituted (N ‐phenyl‐benzimidazol‐1‐yl)diphenylphosphines in RhI complexes. From a set of seven such phosphines L=Lxyz(′) (x , y , z =0 or 1=number of NO2 substituents at the 5, 6 and N‐Ph para positions, respectively), including the non‐nitrated parent L000 and its dicationic N‐methyl counterpart L000′, three LRhCl(COD) and seven L2RhCl(CO) complexes have been obtained in 72–95 % yield. Despite of a cis orientation of the L and CO ligands, the C=O IR stretching frequency ν CO varies in the expected sense, from 1967±1 cm−1 for Lxy0 to 1978±1 cm−1 for Lxy1, and 2005 cm−1 for L000′. The 103Rh NMR chemical shift δ Rh varies from −288 ppm for L000 to −316±1 ppm for L10z or L01z, and −436 ppm for L000′. The ν CO and δ Rh probes thus reveal moderate but systematic variations, and act as “orthogonal” spectroscopic indicators of the presence of nitro groups on the N‐Ph group and the benzimidazole core, respectively. For the dicationic ligand L000′, a tight electrostatic sandwiching of the Rh‐Cl bond by the benzimidazole moities is evidenced by X‐ray crystallography (RhClδ ⋅⋅⋅CN2+ ≈3.01 Å). Along with the LRhCl(CO) complexes, dinuclear side‐products (μ‐CO)(RhClL)2 were also obtained in low spectroscopic yield: for the dinitro ligand L=L011, a unique 1:6.7 clathrate structure, with dichloromethane as solvate, is also revealed by X‐ray crystallography.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号