首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double hydrosilylation of alkynes represents a straightforward method to synthesize bis(silane)s, yet it is challenging if α-substituted vinylsilanes act as the intermediates. Here, a cobalt-catalyzed regiodivergent double hydrosilylation of arylacetylenes is reported for the first time involving this challenge, accessing both vicinal and geminal bis(silane)s with exclusive regioselectivity. Various novel bis(silane)s containing Si−H bonds can be easily obtained. The gram-scale reactions could be performed smoothly. Preliminarily mechanistic studies demonstrated that the reactions were initiated by cobalt-catalyzed α-hydrosilylation of alkynes, followed by cobalt-catalyzed β-hydrosilylation of the α-vinylsilanes to deliver vicinal bis(silane)s, or hydride-catalyzed α-hydrosilylation to give geminal ones. Notably, these bis(silane)s can be used for the synthesis of high-refractive-index polymers (nd up to 1.83), demonstrating great potential utility in optical materials.  相似文献   

2.
Unprecedented phosphine‐catalyzed [4+1] cycloadditions of allenyl imides have been discovered using various N‐based substrates including methyl ketimines, enamines, and a primary amine. These transformations provide a one‐pot access to cyclopentenoyl enamines and imines, or (chiral) γ‐lactams through two geminal C?C bond or two C?N bond formations, respectively. Several P‐based key intermediates including a 1,4‐(bis)electrophilic α,β‐unsaturated ketenyl phosphonium species have been detected by 31P NMR and HRMS analyses, which shed light on the postulated catalytic cycle. The synthetic utility of this new chemistry has been demonstrated through a gram‐scaling up of the catalytic reaction as well as regioselective hydrogenation and double condensation to form cyclopentanoyl enamines and fused pyrazole building blocks, respectively.  相似文献   

3.
Different investigations, such as 1D and 2D NMR spectroscopy, resonance light scattering spectroscopy and molecular dynamics simulations, have been jointly used to achieve a deeper understanding of the degree of structural order in two geminal ionic liquids. In particular, 3,3′‐di‐n‐butyl‐1,1′‐(1,3‐phenylenedimethylene)diimidazolium and 3,3′‐di‐n‐butyl‐1,1′‐(1,4‐phenylenedimethylene)diimidazolium bis[bis(trifluoromethanesulfonyl)imide] have been studied. These geminal ionic liquids were chosen because of the presence of both a rigid phenylenedimethylene link between two imidazolium rings, which should give a high degree of order to the solvent system, and the different shapes of the two cations of the isomers, which could induce different properties and packing in the liquid state. Data collected here show that the two geminal ionic liquids are characterised by a different degree of structural order that induces, for example, a different sensitivity of the two solvent systems to temperature changes or to the presence of a co‐solvent such as methanol.  相似文献   

4.
A pyridinebis(oxazoline) cobalt complex is a very efficient precatalyst for the hydrosilylation of terminal alkynes with Ph2SiH2, providing α‐vinylsilanes with high (Markovnikov) regioselectivity and broad functional‐group tolerance. The vinylsilane products can be further converted into geminal borosilanes through Markovnikov hydroboration with pinacolborane and a bis(imino)pyridine cobalt catalyst.  相似文献   

5.
An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.  相似文献   

6.
A method based on the differences among the 1H NMR chemical shifts of geminal protons of ring‐F methylene resonances (H2‐23, H2‐24 and H2‐26) is proposed for ascertaining the 25R/25S stereochemistry of ring‐F unsubstituted spirostane‐type steroidal sapogenins and steroidal saponins. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrosilylation of alkynes generally yield vinylsilanes, which are inert to the further hydrosilylation because of the steric effects. Reported here is the first successful dihydrosilylation of aryl‐ and silyl‐substituted internal alkynes enabled by a rare‐earth ate complex to yield geminal bis‐ and tris(silanes), respectively. The lanthanum bis(amido) ate complex supported by an ene‐diamido ligand proved to be the ideal catalyst for this unprecedented transformation, while the same series of yttrium and samarium alkyl and samarium bis(amido) ate complexes exhibited poor activity and selectivity, indicating significant effects of the ionic size and ate structure of the rare‐earth catalysts.  相似文献   

8.
In this paper Al, Zn and Al–43.4Zn–1.6Si (AlZn) alloy‐coated steel have been treated with the organofunctional silane γ‐mercaptopropyltrimethoxysilane (γ‐MPS) and the non‐organofunctional silane 1,2‐bis(triethoxysilyl)ethane (BTSE). Also, a two‐step treatment of metal substrates was performed: the metal substrates were treated with the BTSE silane followed by a γ‐MPS treatment. The influence of metal substrate and the pH value of the silane film properties were investigated using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The results show that the BTSE silane is fully hydrolysed but the γ‐MPS silane is not. The presence of negative ions of the type HSixOy? indicates that both types of silane films are highly cross‐linked via Si–O–Si bonds. The two‐step treatment gave a γ‐MPS silane layer on top of the BTSE silane layer but the thickness of the total silane film become thinner than for a single BTSE film, indicating that some of the BTSE is dissolved during the γ‐MPS deposition step. Furthermore, the ToF‐SIMS results show that the thiol group of the γ‐MPS silane is oxidized. Finally, no major influence, either in the positive or the negative mass spectra, from the different metal substrates could be detected for the silane films investigated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Alkyne metathesis is increasingly explored as a reliable method to close macrocyclic rings, but there are no prior examples of an alkyne‐metathesis‐based homodimerization approach to natural products. In this approach to the cytotoxic C2‐symmetric marine‐derived bis(lactone) disorazole C1, a highly convergent, modular strategy is employed featuring cyclization through an ambitious one‐pot alkyne cross‐metathesis/ring‐closing metathesis self‐assembly process.  相似文献   

10.
A functionalized periodic mesoporous organosilica with incorporated chiral bis(cyclohexyldiamine)‐based NiII complexes within the silica framework was developed by the co‐condensation of (1R,2R)‐cyclohexyldiamine‐derived silane and ethylene‐bridge silane, followed by the complexation of NiBr2 in the presence of (1R,2R)‐N,N′‐dibenzylcyclohexyldiamine. Structural characterization by XRD, nitrogen sorption, and TEM disclosed its orderly mesostructure, and FTIR and solid‐state NMR spectroscopy demonstrated the incorporation of well‐defined single‐site bis(cyclohexyldiamine)‐based NiII active centers within periodic mesoporous organosilica. As a chiral heterogeneous catalyst, this functionalized periodic mesoporous organosilica showed high catalytic activity and excellent enantioselectivity in the asymmetric Michael addition of 1,3‐dicarbonyl compounds to nitroalkenes, comparable to those with homogeneous catalysts. In particular, this heterogeneous catalyst could be recovered easily and reused repeatedly up to nine times without obviously affecting its enantioselectivity, thus showing good potential for industrial applications.  相似文献   

11.
Ambiphilic molecules, which contain a Lewis base and Lewis acid, are of great interest based on their unique ability to activate small molecules. Phosphine boronates are one class of these substrates that have interesting catalytic activity. Direct access to these phosphine boronates is described through the iridium‐catalyzed C?H borylation of phosphines. An unconventional cationic iridium catalyst was identified as optimal for a range of phosphines, providing good yields and selectivity across a diverse class of phosphine boronates (isolated as the borane‐protected phosphine). A complimentary catalyst system (quinoline‐based silane ligand with [(COD)IrOMe]2) was optimal for biphenyl‐based phosphines. Selective polyborylation was also shown providing bis‐ and tris‐borylated phosphines. Deprotection of the phosphine boronate provided free ambiphilic phosphine boronates, which do not have detectable interactions between the phosphorus and boron atoms in solution or the solid state.  相似文献   

12.
Di(acylamino)pyridines successfully template the formation of hydrogen‐bonded rotaxanes through five‐component clipping reactions. A solid‐state study showed the participation of the pyridine nitrogen atom in the stabilization of the mechanical bond between the thread and the benzylic amide macrocycle. The addition of external complementary binders to a series of interlocked bis(2,6‐di(acylamino)pyridines) promoted restraint of the back and forward ring motion. The original translation can be restored through a competitive recognition event by the addition of a preorganized bis(di(acylamino)pyridine) that forms stronger ADA–DAD complexes with the external binders.  相似文献   

13.
Here, we describe simple B(C6F5)3-catalyzed mono- and dihydrosilylation reactions of terminal alkynes by using a silane-tuned chemoselectivity strategy, affording vinylsilanes and unsymmetrical geminal bis(silanes). This strategy is applicable to the dihydrosilylation of both aliphatic and aryl terminal alkynes with different silane combinations. Gram-scale synthesis and conducting the reaction without the exclusion of air and moisture demonstrate the practicality of this methodology. The synthetic utility of the resulting products was further highlighted by the structural diversification of geminal bis(silanes) through transforming the secondary silane into other silyl groups. Comprehensive theoretical calculations combined with kinetical isotope labeling studies have shown that a prominent kinetic differentiation between the hydrosilylation of alkynes and vinylsilane is responsible for the chemoselective construction of unsymmetrical 1,1-bis(silanes).

A B(C6F5)3/silane-based system enables the chemoselective dihydrosilylation of terminal alkynes. Using a combination of different types of hydrosilanes, a series of unsymmetrical or symmetrical 1,1-bis(silanes) could be constructed.  相似文献   

14.
β‐Aminoalkylboronic acids are bioisosteres of the pharmaceutically important class of β‐amino acids but few stereoselective methods exist for their preparation. The 1,2‐addition of lithiated 1,1‐diborylalkanes onto chiral Ntert‐butanesulfinyl aldimines produces β‐sulfinimido gem‐bis(boronates) in good to excellent yields with high diastereoselectivity. The optimized conditions involve the use of rubidium fluoride and water, and are compatible with functionalized alkyl, aryl, alkenyl, and alkynyl substituents. Under these conditions, the geminal quaternary alkyl bis(pinacolatoboryl) intermediates undergo a highly diastereoselective monoprotodeboronation to afford a wide range of syn‐α,β‐disubstituted β‐aminoalkylboronates. This novel application of protodeboronation chemistry was shown to result from a kinetically controlled, diastereotopic‐group‐selective B?C bond protolysis dictated by the configuration of the adjacent stereogenic C?N center. Facile acidic cleavage of the sulfinimide auxiliary produces the free aminoboronates with high enantiomeric purity.  相似文献   

15.
A novel highly regioselective, fluoride‐catalyzed hydrosilylation of β‐hydroxy epoxides has been developed. The reaction is modular and applicable to the synthesis of a broad range of 1,4‐diols. Fluoride is crucial for two reasons: First, it promotes the formation of a silyl ether (which contains a Si‐H bond) and, second, it enables ring opening by an intramolecular SN2 reaction through activation of the silane. The reaction can be performed under air.  相似文献   

16.
An unexpected cationic bis‐N‐heterocyclic carbene (NHC) benzylidene ether based ruthenium complex ( 2 a ) was prepared through the double incorporation of an unsymmetrical unsaturated N‐heterocyclic carbene (U2‐NHC) ligand that bore an N‐substituted cyclododecyl side chain. The isolation and full characterization (including X‐ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring‐closing metathesis, which could be “switched on” under acidic conditions.  相似文献   

17.
Molybdenum‐, tungsten‐, and ruthenium‐based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. A concise diastereo‐ and enantioselective route that furnishes the anti‐proliferative natural product neopeltolide is now disclosed. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring‐opening/cross‐metathesis promoted by a Mo monoaryloxide pyrrolide (MAP) complex and a macrocyclic ring‐closing metathesis that affords a trisubstituted alkene and is catalyzed by a Mo bis(aryloxide) species. Furthermore, Z‐selective cross‐metathesis reactions, facilitated by Mo and Ru complexes, have been employed in the stereoselective synthesis of the acyclic dienyl moiety of the target molecule.  相似文献   

18.
A series of novel C2‐symmetric chiral pyridine β‐amino alcohol ligands have been synthesized from 2,6‐pyridine dicarboxaldehyde, m‐phthalaldehyde and chiral β‐amino alcohols through a two‐step reaction. All their structures were characterized by 1H NMR, 13C NMR and IR. Their enantioselective induction behaviors were examined under different conditions such as the structure of the ligands, reaction temperature, solvent, reaction time and catalytic amount. The results show that the corresponding chiral secondary alcohols can be obtained with high yields and moderate to good enantiomeric excess. The best result, up to 89% ee, was obtained when the ligand 3c (2S,2′R)‐2,2′‐((pyridine‐2,6‐diylbis(methylene))bisazanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was used in toluene at room temperature. The ligand 3g (2S,2′R)‐2,2′‐((1,3‐phenylenebis(methylene))bis(azanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was prepared in which the pyridine ring was replaced by the benzene ring compared to 3c in order to illustrate the unique role of the N atom in the pyridine ring in the inductive reaction. The results indicate that the coordination of the N atom of the pyridine ring is essential in the asymmetric induction reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The β‐Z selectivity in the hydrosilylation of terminal alkynes has been hitherto explained by introduction of isomerisation steps in classical mechanisms. DFT calculations and experimental observations on the system [M(I)2{κ‐C,C,O,O‐(bis‐NHC)}]BF4 (M=Ir ( 3 a ), Rh ( 3 b ); bis‐NHC=methylenebis(N‐2‐methoxyethyl)imidazole‐2‐ylidene) support a new mechanism, alternative to classical postulations, based on an outer‐sphere model. Heterolytic splitting of the silane molecule by the metal centre and acetone (solvent) affords a metal hydride and the oxocarbenium ion [R3Si? O(CH3)2]+, which reacts with the corresponding alkyne in solution to give the silylation product [R3Si? CH?C? R]+. Thus, acetone acts as a silane shuttle by transferring the silyl moiety from the silane to the alkyne. Finally, nucleophilic attack of the hydrido ligand over [R3Si? CH?C? R]+ affords selectively the β‐(Z)‐vinylsilane. The β‐Z selectivity is explained on the grounds of the steric interaction between the silyl moiety and the ligand system resulting from the geometry of the approach that leads to β‐(E)‐vinylsilanes.  相似文献   

20.
Aprocess for the assembly of carbazole alkaloids has been developed on the basis of ring‐closing metathesis (RCM) and ringrearrangement–aromatization (RRA) as the key steps. This method is based on allyl Grignard addition to isatin derivatives to provide smooth access to 2,2‐diallyl 3‐oxindole derivatives through a 1,2‐allyl shift. The diallyl derivatives were used as RCM precursors to afford a novel class of spirocyclopentene‐3‐oxindole derivatives, which underwent a novel RRA reaction to afford carbazole derivatives. The synthetic sequence to carbazoles was shortened by combining the RCM and RRA steps in an orthogonal tandem catalytic process. The utility of this methodology was further demonstrated by the straightforward synthesis of carbazole alkaloids, including amukonal derivative, girinimbilol, heptaphylline, and bis(2‐hydroxy‐3‐methylcarbazole).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号