首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Zeolite EU‐12, the framework structure of which has remained unsolved during the past 30 years, is synthesized at a specific SiO2/Al2O3 ratio using choline as an organic structure‐directing agent, with both Na+ and Rb+ ions present. Synchrotron powder X‐ray diffraction and Rietveld analyses reveal that the EU‐12 structure has a two‐dimensional 8‐ring channel system. Among the two distinct 8‐ring (4.6×2.8 and 5.0×2.7 Å) channels along c axis, the smaller one interconnects with the sinusoidal 8‐ring (4.8×3.3 Å) channel along a axis. The other large one is simply linked up with the sinusoidal channel by sharing 8‐rings (4.8×2.6 Å) in the ac plane. The proton form of EU‐12 was found to show a considerably higher ethene selectivity in the low‐temperature dehydration of ethanol than H‐mordenite, the best catalyst for this reaction.  相似文献   

2.
Herein we report the synthesis, structure solution, and catalytic properties of PST‐24, a novel channel‐based medium‐pore zeolite. This zeolite was synthesized via the excess fluoride approach. Electron diffraction shows that its structure is built by composite cas‐zigzag (cas‐zz) building chains, which are connected by double 5‐ring (d5r) columns. While the cas‐zz building chains are ordered in the PST‐24 framework, the d5r columns adopt one of two possible arrangements; the two adjacent d5r columns are either at the same height or at different heights, denoted arrangements S and D, which can be regarded as open and closed valves that connect the channels, respectively. A framework with arrangement D only has a 2D 10‐ring channel system, whereas that with arrangement S only contains 3D channels. In actual PST‐24 crystals, the open and closed valves are almost randomly dispersed to yield a zeolite framework where the channel dimensionality varies locally from 2D to 3D.  相似文献   

3.
Organic structure‐directing agent (OSDA)‐free synthesis of zeolite beta is a subject of both scientific and industrial interest. Herein, we report a comprehensive investigation into the effects of various parameters on the seed‐assisted crystallization of zeolite beta in the absence of OSDA. The crystallization behavior of “OSDA‐free beta” is strongly governed by the chemical composition of the starting Na+‐aluminosilicate gel as well as by the Si/Al ratios of the calcined beta seed crystals, which are prepared using tetraethylammonium hydroxide (TEAOH). Furthermore, OSDA‐free beta seed crystals can be used to form zeolite beta, termed “green beta”. XRD, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and 27Al magic angle spinning NMR analyses showed that the OSDA‐free beta and green beta were of high purity and crystallinity. The nitrogen adsorption–desorption of OSDA‐free beta and green beta revealed higher surface areas and larger volumes in the micropore region than those of the beta seeds synthesized with OSDA after calcination. These results provide a robust and reliable process for the environmentally friendly production of high‐quality zeolite beta in a completely OSDA‐free Na+‐aluminosilicate system.  相似文献   

4.
IDM‐1 is a new silica zeolite with an ordered and well‐defined framework constructed by alternating pentasil layers and interrupted layers, giving rise to an intersecting system of straight medium pores and undulating extra‐large lobed pores. This unique structure was solved by rotation electron diffraction and refined against synchrotron powder X‐ray diffraction data. Despite the presence of both Si(OSi)3(OH) and Si(OSi)2(OH)2 sites, this new zeolite presents high thermal stability, withstanding calcination even to 1000 °C. The location of defects at specific sites of the structure results in alternating hydrophobic SiO2 and hydrophilic SiO(2?x)(OH)2x intracrystalline regions. This peculiar combination of intersecting medium and extra‐large pores and alternating regions of different chemical character may provide this zeolite with unique catalytic properties.  相似文献   

5.
The development of inorganic frameworks with extra‐large pores (larger than 12‐membered rings) has attracted considerable attention because of their potential applications in catalysis, the separation of large molecules, and so forth. We herein report the synthesis of the new extra‐large‐pore zeolite NUD‐2 by using the supramolecular self‐assembly of simple aromatic organic cations as structure‐directing agents (SDAs). NUD‐2 is a high‐silicon‐content germanosilicate with interconnecting 14×10‐membered‐ring channels. The SDAs in NUD‐2 can be removed by calcination in air at 550 °C to yield permanent pores with a BET surface area of 500 m2g?1. Both germanium and organic cations in NUD‐2 can also be removed by treatment with acid at lower temperature, thus not only affording recycling of germanium and SDAs, but also providing a highly stable siliceous zeolite. In addition, aluminum ions can be incorporated into the framework of NUD‐2. The NUD‐2 structure is yet another extra‐large‐pore zeolite synthesized by using the supramolecular self‐assembling templating approach, thus demonstrating that this approach is a general and applicable strategy for synthesis of new large‐ and extra‐large‐pore zeolites.  相似文献   

6.
Nanometer‐sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post‐milling recrystallization method. This method is suitable for producing nanometer‐sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer‐sized zeolite A, nanometer‐sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer‐sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future.  相似文献   

7.
Large‐pore microporous materials are of great interest to process bulky hydrocarbon and biomass‐derived molecules. ITQ‐27 (IWV) has a two‐dimensional pore system bounded by 12‐membered rings (MRs) that lead to internal cross‐sections containing 14 MRs. Investigations into the catalytic behavior of aluminosilicate (zeolite) materials with this framework structure have been limited until now due to barriers in synthesis. The facile synthesis of aluminosilicate IWV in both hydroxide and fluoride media is reported herein using simple, diquaternary organic structure‐directing agents (OSDAs) that are based on tetramethylimidazole. In hydroxide media, a zeolite product with Si/Al=14.8–23.2 is obtained, while in fluoride media an aluminosilicate product with Si/Al up to 82 is synthesized. The material produced in hydroxide media is tested for the hydroisomerization of n‐hexane, and results from this test reaction suggest that the effective pore size of zeolites with the IWV framework structure is similar to but slightly larger than that of ZSM‐12 (MTW), in fairly good agreement with crystallographic data.  相似文献   

8.
9.
10.
The cationic ring‐opening polymerization of a seven‐membered cyclic monothiocarbonate, 1,3‐dioxepan‐2‐thione, produced a soluble polymer through the selective isomerization of thiocarbonyl to a carbonyl group {? [SC(C?O)O(CH2)4]n? }. The molecular weights of the polymer could be controlled by the feed ratio of the monomer to the initiators or the conversion of the monomer during the polymerization, although some termination reactions occurred after the complete consumption of the monomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1014–1018, 2005  相似文献   

11.
The crystallization chemistry of silica‐based zeolites in ionic liquids remains highly puzzling and interesting in the field of zeolite science. Herein, we report the successful ionothermal synthesis of germanosilicate zeolites. The ionothermal templating effect with respect to the structure, alkalinity and concentration of organic additives was comparatively studied. The results showed that a small amount of organic base could effectively aid the dissolution of silica source and facilitate the crystallization of germanosilicate zeolites with ionic liquid as template. Remarkably, STW and IRR structures constructed with double‐four‐ring (D4R) structure‐building units were ionothermally prepared using 1‐ethyl/butyl‐3‐methyl imidazolium and 1‐benzyl‐3‐methyl imidazolium ionic liquids as template, respectively. Ionothermal synthesis tailored with organic base showed suitable chemistry for the formation of germanium‐containing siliceous D4R units. This finding will be helpful for the rational exploration of novel extra‐large‐pore zeolitic structures.  相似文献   

12.
Hollow aluminosilicate zeolite beta was successfully synthesized by adding CIT‐6, that is, zincosilicate zeolite, which has the same topology as beta, as seeds to the Na‐aluminosilicate gel without the need for organic structure‐directing agents. One important factor in the successful organic structure‐directing agent (OSDA)‐free synthesis of hollow beta crystals is the solubility of the seed crystals in alkaline media. CIT‐6 was less stable than aluminosilicate zeolite beta in alkaline media and the solubility changed depending on whether the crystals were calcined or not. The hollow beta could be obtained by using the uncalcined CIT‐6 seed crystals. The volumes of intra‐crystalline voids were tuned by changing the reaction time and the initial gel compositions, such as the SiO2/Al2O3 and Na2O/SiO2 ratios. We estimated that the intra‐crystalline voids were formed through the dissolution of the seed crystals, just after the crystal growth of new beta on the outer surface of the seeds. In addition, new crystal growth toward inside of the void was also observed by TEM. On the basis of the characterization data, such as chemical analysis, N2‐adsorption/desorption measurements, and TEM observation, a formation mechanism of the intra‐crystalline voids is proposed and discussed.  相似文献   

13.
The crystallization of zeolite TUN with 1,4‐bis(N‐methylpyrrolidinium)butane as template proceeds through an intermediate, designated IPC‐3P, following the Ostwald rule of successive transformations. This apparently layered transient product has been thoroughly investigated and found to consist of MWW monolayers stacked without alignment in register, that is, disordered compared with MCM‐22P. The structure was confirmed based on X‐ray diffraction and high‐resolution (HR)TEM analysis. The layered zeolite precursor IPC‐3P can be swollen and pillared affording a combined micro‐ and mesoporous material with enhanced Brunauer–Emmett–Teller (BET) surface area (685 m2g?1) and greater accessibility of Brønsted acid sites for bulky molecules. This mesoporous material was probed with 2,6‐di‐tert‐butylpyridine (DTBP). IPC‐3P and its modification create a new layered zeolite sub‐family belonging to the MWW family. FTIR data indicate that (Al)MWW materials MCM‐22 and IPC‐3 with Si/Al ratios greater than 20 exhibit a lower relative ratio of Brønsted to Lewis acid sites than MCM‐22 (with Si/Al ratios of around 13), that is, less than 2 versus more than 3, respectively. This is maintained even upon pillaring and warrants further exploration of materials like IPC‐3P with a higher Al content. The unique XRD features of IPC‐3P indicating misaligned stacking of layers and distinct from MCM‐22P, are also seen in other MWW materials such as EMM‐10P, hexamethonium‐templated (HM)‐MCM‐22, ITQ‐30, and UZM‐8 suggesting the need for more detailed study of their identity and properties.  相似文献   

14.
基于2-酰基1,3-环己二酮异构化反应,本文用密度泛函理论对文献报道的和我们设计的机理进行了系统研究。对反应中可能的速控步骤1,3-H和1,5-H迁移的过渡态结构和能垒进行了优化和计算。结果表明:本文设计的包括两个连续的1,5-酰基迁移和1,5-H迁移的反应机理,在动力学上更占优势。为了考察溶剂环境对反应的影响,本文分别研究了溶剂三乙胺和水对速度控制步骤1,3-H和1,5-H迁移的催化效应,揭示了两种催化剂对1,3-H和1,5-H迁移催化作用的差异。  相似文献   

15.
On the Hydrolysis of 2,3‐Dihydro‐1,3‐di‐tert‐butyl‐4,5‐dimethylimidazol‐2‐ylidene. The Crystal Structure of 1,3‐Di‐tert‐butyl‐4,5‐dimethylimidazolium Bicarbonate 1,3‐Di‐tert‐butyl‐4,5‐dimethylimidazolium bicarbonate ( 7 ), formed on the exposure of 2,3‐dihydro‐1,3‐di‐tert‐butyl‐4,5‐dimethylimidazol‐2‐ylidene ( 6 ) towards air, is prepared on the reaction of 6 with ammonium bicarbonate; its crystal structure analysis reveals the presence of dimeric bicarbonate anions linked to each other and to the imidazolium ions with hydrogen bonds.  相似文献   

16.
Another way to dienes : The ruthenium‐catalyzed 6‐endo‐cycloisomerization of 1,5‐enynes gives the corresponding 1,3‐cyclohexadienes in high to excellent yields. This novel synthetic and catalytic method constitutes another way to selectively prepare 1,3‐cyclohexadienes, this cyclic diene skeleton being a core subunit in many natural products and a useful building block for a variety of organic transformations.

  相似文献   


17.
18.
The adsorption and the mechanism of the oxidative dehydrogenation (ODH) of propane over VO2‐exchanged MCM‐22 are investigated by DFT calculations using the M06‐L functional, which takes into account dispersion contributions to the energy. The adsorption energies of propane are in good agreement with those from computationally much more demanding MP2 calculations and with experimental results. In contrast, B3LYP binding energies are too small. The reaction begins with the movement of a methylene hydrogen atom to the oxygen atom of the VO2 group, which leads to an isopropyl radical bound to a HO? V? O intermediate. This step is rate determining with the apparent activation energy of 30.9 kcal mol?1, a value within the range of experimental results for ODH over other silica supports. In the propene formation step, the hydroxyl group is the more reactive group requiring an apparent activation energy of 27.7 kcal mol?1 compared to that of the oxy group of 40.8 kcal mol?1. To take the effect of the extended framework into account, single‐point calculations on 120T structures at the same level of theory are performed. The apparent activation energy is reduced to 28.5 kcal mol?1 by a stabilizing effect caused by the framework. Reoxidation of the catalyst is found to be important for the product release at the end of the reaction.  相似文献   

19.
20.
Nests of three silanol groups are located on the internal pore surface of calcined zeolite SSZ‐70. 2D 1H double/triple‐quantum single‐quantum correlation NMR experiments enable a rigorous identification of these silanol triad nests. They reveal a close proximity to the structure directing agent (SDA), that is, N,N′‐diisobutyl imidazolium cations, in the as‐synthesized material, in which the defects are negatively charged (silanol dyad plus one charged SiO? siloxy group) for charge balance. It is inferred that ring strain prevents the condensation of silanol groups upon calcination and removal of the SDA to avoid energetically unfavorable three‐rings. In contrast, tetrad nests, created by boron extraction from B‐SSZ‐70 at various other locations, are not stable and silanol condensation occurs. Infrared spectroscopic investigations of adsorbed pyridine indicate an enhanced acidity of the silanol triads, suggesting important implications in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号