首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cysteine‐mediated native chemical ligation is a powerful method for protein chemical synthesis. Herein, we report an unprecedentedly mild system (TCEP/NaBH4 or TCEP/LiBEt3H; TCEP=tris(2‐carboxyethyl)phosphine) for chemoselective peptide desulfurization to achieve effective protein synthesis via the native chemical ligation–desulfurization approach. This method, termed P−B desulfurization, features usage of common reagents, simplicity of operation, robustness, high yields, clean conversion, and versatile functionality compatibility with complex peptides/proteins. In addition, this method can be used for incorporating deuterium into the peptides after cysteine desulfurization by running the reaction in D2O buffer. Moreover, this method enables the clean desulfurization of peptides carrying post‐translational modifications, such as phosphorylation and crotonylation. The effectiveness of this method has been demonstrated by the synthesis of the cyclic peptides dichotomin C and E and synthetic proteins, including ubiquitin, γ‐synuclein, and histone H2A.  相似文献   

2.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one‐pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N‐masking group of the N‐terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o‐aminoanilide. The ready availability of Fmoc‐Cys(Trt)‐OH, which is routinely used in Fmoc solid‐phase peptide synthesis, where the Fmoc group is pre‐installed on cysteine residue, minimizes additional steps required for the temporary protection of the N‐terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

3.
The preparation of native S‐palmitoylated (S‐palm) membrane proteins is one of the unsolved challenges in chemical protein synthesis. Herein, we report the first chemical synthesis of S‐palm membrane proteins by removable‐backbone‐modification‐assisted Ser/Thr ligation (RBMGABA‐assisted STL). This method involves two critical steps: 1) synthesis of S‐palm peptides by a new γ‐aminobutyric acid based RBM (RBMGABA) strategy, and 2) ligation of the S‐palm RBM‐modified peptides to give the desired S‐palm product by the STL method. The utility of the RBMGABA‐assisted STL method was demonstrated by the synthesis of rabbit S‐palm sarcolipin (SLN) and S‐palm matrix‐2 (M2) ion channel. The synthesis of S‐palm membrane proteins highlights the importance of developing non‐NCL methods for chemical protein synthesis.  相似文献   

4.
Various bioactive proteins have been synthesized by native chemical ligation (NCL) and its combination with subsequent desulfurization (e.g., conversion from Cys to Ala). In NCL, excess 4‐mercaptophenylacetic acid (MPAA) is generally added to facilitate the reaction. However, co‐elution of MPAA with the ligation product during preparative high‐performance liquid chromatography sometimes reduces its usefulness. In addition, contamination of MPAA disturbs subsequent desulfurization. Here, we report for the first time that imidazole can be adopted as an alternative to MPAA in NCL using a peptide‐alkylthioester. The efficiency of the imidazole‐aided NCL (Im‐NCL) is similar to that of traditional MPAA‐aided NCL. As model cases, we successfully synthesized adiponectin(19‐107) and [Ser(PO3H2)65]‐ubiquitin using Im‐NCL with a one‐pot desulfurization.  相似文献   

5.
《Electroanalysis》2005,17(23):2163-2169
A thiol‐specific electroactive cross‐linker, N‐(2‐ethyl‐ferrocene)maleimide (Fc‐Mi), has been used to tag surface‐confined peptides containing cysteine residues or oligodeoxynucleotides (ODNs) whose 3′ ends have been modified with thiol groups. The peptides studied herein include both the oxidized and reduced forms of glutathione and a hexapeptide. Cyclic voltammograms (CVs) of the Fc‐Mi groups attached to the surfaces were used to quantify the total number of cysteine residues that are tagged and/or can undergo facile electron transfer reactions with the underlying electrodes. A quartz crystal microbalance was used in conjunction with CV to estimate the total number of cysteine groups labeled by Fc‐Mi per peptide molecule. By comparing to mass spectrometric studies, it is confirmed that not all of the Fc‐Mi linked to the cysteine groups can participate in the electron transfer reactions. The methodology is further extended to the determination of ODN samples in a sandwich assay wherein the thiol linker on the 3′ end can be tagged with Fc‐Mi. The analytical performance was evaluated through determinations of a complementary ODN target and targets with varying numbers of mismatching bases. ODN samples as low as 10 fmol can be detected. Such a low detection level is remarkable considering that no signal amplification scheme is involved in the current method. The approach is shown to be sequence‐ and/or structure‐specific and does not require sophisticated instrumentation and complex experimental procedure.  相似文献   

6.
Treatment of solutions of the halophosphines TrtP(H)F (Trt = trityl, Ph3C) 1a and TrtP(H)Cl 1b with equimolar amounts of TOB (tetrachloro‐orthobenzoquinone) led to the formation of mixtures of products. They contained the phosphoranes 2a and 2b, which were formed by oxidation with TOB and are in equilibrium with the phosphines 3a and 3b. Moreover, the trityl phosphonite 4, which was formed by dehydrohalogenation of 2a, 2b and 3a, 3b, was observed in both mixtures. The dehydrohalogenation was found to be reversible in the case of HF. The pure compounds 4 and 5 were obtained from the reaction of TrtPCl2 with tetrachlorocatechol 4 and by the oxidation of 1a and 1b with two equivalents of TOB. Because of its importance in this reaction sequence, an X‐ray crystal structure determination was carried out on 4. The P–O bond lengths of 168.4(2) and 167.7(2) pm are probably to be attributed to a bond‐lengthening effect of the chlorine atoms of the quinone. As a comparison with analogous systems reveals, the phosphorane 5 is an example of a σ5λ5(P) species in which the phosphorus atom exhibits square‐pyramidal coordination. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 277–280, 1999  相似文献   

7.
Aminothiols were attached through their thiol group onto the 4,4′-dimethoxytrityl (Dmt)-, 4-methoxytrityl (Mmt)-, 4-methyltrityl (Mtt)-, trityl (Trt)- and 2-chlorotrityl (Clt)-resins. The new resins were used in the solid-phase synthesis of aminothiol containing peptides utilizing N-Fmoc amino acids. The synthesized peptides were cleaved from the resins by treatment with trifluoroacetic acid (TFA) solutions using triethylsilane (TES) or ethanedithiol (EDT) as scavengers.  相似文献   

8.
Native chemical ligation combined with desulfurization has become a powerful strategy for the chemical synthesis of proteins. Here we describe the use of a new thiol additive, methyl thioglycolate, to accomplish one‐pot native chemical ligation and metal‐free desulfurization for chemical protein synthesis. This one‐pot strategy was used to prepare ubiquitin from two or three peptide segments. Circular dichroism spectroscopy and racemic protein X‐ray crystallography confirmed the correct folding of ubiquitin. Our results demonstrate that proteins synthesized chemically by streamlined 9‐fluorenylmethoxycarbonyl (Fmoc) solid‐phase peptide synthesis coupled with a one‐pot ligation–desulfurization strategy can supply useful molecules with sufficient purity for crystallographic studies.  相似文献   

9.
Chemical ligations to form native peptides from N→N acyl migrations in Trp‐containing peptides via 10‐ to 18‐membered cyclic transition states are described. In this study, a statistical, predictive model that uses an extensive synthetic and computational approach to rationalize the chemical ligation is reported. N→N acyl migrations that form longer native peptides without the use of Cys/Ser/Tyr residues or an auxiliary group at the ligation site were achieved. The feasibility of these traceless chemical ligations is supported by the N?C bond distance in N‐acyl isopeptides. The intramolecular nature of the chemical ligations is justified by using competitive experiments and theoretical calculations.  相似文献   

10.
The covalent immobilization of peptides, proteins, and other biomolecules to hydrogels provides a biologically mimicking environment for cell and tissue growth. Bioorthogonal chemical reactions can serve as a tool for this, but the paucity of such reactions and mutual incompatibilities limits the number of distinct molecules that can be introduced. We now report that the potassium acyltrifluoroborate (KAT ) amide‐forming ligation is orthogonal to both thiol‐Michael and strain promoted azide alkyne cycloadditions (SPAAC ) and the requisite functional groups – KAT s and hydroxylamines – are stable and compatible to hydrogel formation, protein modification, and post‐assembly immobilization of biomolecules onto hydrogels. In combination these ligations enables stepwise covalent protein immobilization of multiple BSA ‐derivatives onto the hydrogel scaffold regardless of the order of addition.  相似文献   

11.
3‐Benzyl‐4‐phenyl‐1,2,4‐triazole‐5‐thiol ( 1 ) was synthesized and used as starting material for preparation of 1,2,4‐triazole bearing substituted thiosemicarbazides moiety ( 4a‐d ) in high yields. The thiosemicarbazides 4a‐d were cyclized in basic medium to give two triazole rings linked by thiomethylene group ( 5a‐d ), while cyclization of thiosemicarbazides 4a‐d with chloroacetyl chloride in the presence of CHCl3 and K2CO3 afforded the thiazolidinone derivatives 6a‐d . The reaction of thiosemicarbazides 4a‐c with phenacyl bromide in the presence of EtOH and fused CH3COONa gave the corresponding thiazoline ring systems 7a‐c . Condensation of the 3‐benzyl‐1,2,4‐triazole‐5(1H)‐thiol ( 1 ) with chloroacetic acid and aromatic aldehydes ( 8a‐ g) in boiling acetic acid/acetic anhydride mixture in the presence of fused sodium acetate gave one single isomer only, which might be 9a‐g or 10a‐g . Upon application of Micheal addition reaction on compounds 9a‐e with cyclic secondary amines such as piperidine or morpholine the 2‐benzyl‐6‐(α‐amino‐aryl/methyl)‐1,3‐thiazolo[3,2‐ b][1,2,4]‐triazol‐5‐ols ( 11a‐j ) were obtained in good yields The structure of all new compounds were determined using both spectral and elemental analyses.  相似文献   

12.
Fully unprotected peptide o‐aminoanilides can be efficiently activated by NaNO2 in aqueous solution to furnish peptide thioesters for use in native chemical ligation. This finding enables the convergent synthesis of proteins from readily synthesizable peptide o‐aminoanilides as a new type of crypto‐thioesters. The practicality of this approach is shown by the synthesis of histone H2B from five peptide segments. Purification or solubilization tags, which are sometimes needed to improve the efficiency of protein chemical synthesis, can be incorporated into the o‐aminoanilide moiety, as demonstrated in the preparation of the cyclic protein lactocyclicin Q.  相似文献   

13.
A photoaffinity labeling (PAL)‐based method for the rapid identification of target proteins is presented in which a high‐performance chemical tag, an isotope‐coded fluorescent tag (IsoFT), can be attached to the interacting site by irradiation. Labeled peptides can be easily distinguished among numerous proteolytic digests by sequential detection with highly sensitive fluorescence spectroscopy and mass spectrometry. Subsequent MS/MS analysis provides amino acid sequence information with a higher depth of coverage. The combination of PAL and heterogeneous target‐selecting techniques significantly reduces the amount of time and protein required for identification. An additional photocleavable moiety successfully accelerated proteomic analysis using cell lysate. This method is a widely applicable approach for the rapid and accurate identification of interacting proteins.  相似文献   

14.
N‐Sulfanylethylanilide (SEAlide) peptides were developed with the aim of achieving facile synthesis of peptide thioesters by 9‐fluorenylmethyloxycarbonyl (Fmoc)‐based solid‐phase peptide synthesis (Fmoc SPPS). Initially, SEAlide peptides were found to be converted to the corresponding peptide thioesters under acidic conditions. However, the SEAlide moiety was proved to function as a thioester in the presence of phosphate salts and to participate in native chemical ligation (NCL) with N‐terminal cysteinyl peptides, and this has served as a powerful protein synthesis methodology. The reactivity of a SEAlide peptide (anilide vs. thioester) can be easily tuned with or without the use of phosphate salts. This interesting property of SEAlide peptides allows sequential three‐fragment or unprecedented four‐fragment ligation for efficient one‐pot peptide/protein synthesis. Furthermore, dual‐kinetically controlled ligation, which enables three peptide fragments simultaneously present in the reaction to be ligated in the correct order, was first achieved using a SEAlide peptide. Beyond our initial expectations, SEAlide peptides have served in protein chemistry fields as very useful crypto‐peptide thioesters. DOI 10.1002/tcr.201200007  相似文献   

15.
We present a novel strategy for the traceless purification and synthetic modification of peptides and proteins obtained by native chemical ligation. The strategy involves immobilization of a photocleavable semisynthetic biotin–protein conjugate on streptavidin‐coated agarose beads, which eliminates the need for tedious rebuffering steps and allows the rapid removal of excess peptides and additives. On‐bead desulfurization is followed by delivery of the final tag‐free protein product. The strategy is demonstrated in the isolation of a tag‐free Alzheimer's disease related human tau protein from a complex EPL mixture as well as a triphosphorylated peptide derived from the C‐terminus of tau.  相似文献   

16.
(?)‐Epigallocatechin gallate (EGCG) is a major bioactive component in leaves of green tea, and has been widely investigated for its anti‐tumor activity. The interaction between EGCG and the key peptides or proteins (e.g. glutathione, enzymes) in vivo is thought to be involved in the toxicity and anti‐cancer mechanism of EGCG. However, the true anti‐tumor mechanism of EGCG is not clear, and few studies have focused on the reactivity of EGCG toward peptides or proteins under physiological conditions (pH 7.4, 37°C). In this work, the covalent interactions between EGCG and model peptides containing one or more nucleophilic residues (i.e. Arg, Cys, Met, and α‐NH2 of the N‐terminus of peptides) under physiological condition were fully characterized using mass spectrometry. It was found that EGCG can react with the thiol groups of peptides to form adducts under physiological conditions (pH 7.4, 37°C), even in the absence of the peroxidase/hydrogen peroxide system. Besides the thiol groups of peptides, it is firstly reported that EGCG also reacts with α‐NH2 of the N‐terminus or arginine residues of model peptides to form Schiff base adducts, and the methionine residues of model peptides can be easily oxidized by hydrogen peroxide (H2O2) generated during the process of EGCG auto‐oxidation to form methionine sulfoxide products. The preference for the reaction of nucleophlic residues of peptides with EGCG was determined to have the following order: Cys > α‐NH2 of the N‐terminus > Arg. The neutral loss ions of [M+H–170]+ and [M+H‐138]+ were detected in all tandem mass spectra of the EGCG adducts of peptides, which indicates that these two neutral loss ions can be considered as the characteristic neutral loss ions of peptides modified by EGCG. Results of the present research provide insights into the toxicology and anti‐tumor mechanism of EGCG in vivo. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double‐histidine motifs with CuII spin labels can further increase the precision of distance measurements. It is also useful for proteins containing essential cysteines that can interfere with thiol‐specific labelling. However, the non‐covalent CuII coordination approach is vulnerable to low binding‐affinity. Herein, dissociation constants (KD) are investigated directly from the modulation depths of relaxation‐induced dipolar modulation enhancement (RIDME) EPR experiments. This reveals low‐ to sub‐μm CuII KDs under EPR distance measurement conditions at cryogenic temperatures. We show the feasibility of exploiting the double‐histidine motif for EPR applications even at sub‐μm protein concentrations in orthogonally labelled CuII–nitroxide systems using a commercial Q‐band EPR instrument.  相似文献   

18.
Thiol‐isocyanate‐acrylate ternary networks were formed by the combination of thiol‐isocyanate coupling, thiol‐acrylate Michael addition, and acrylate homopolymerization. This hybrid polymerization reaction sequence was preferentially controlled by using phosphine catalyst systems in combination with photolysis. The reaction kinetics of the phosphine/acrylate thiol‐isocyanate coupling reactions were systematically investigated by evaluating model, small molecule reactions. The thiol‐isocyanate reaction was completed within 1 min while the thiol‐acrylate Michael addition reaction required ~10 min. Both thiol‐isocyanate coupling and thiol‐acrylate Michael addition reactions involving two‐step anionic processes were found to be both quantitative and efficient. However, the thiol‐isocyanate coupling reaction was much more rapid than the thiol‐acrylate Michael addition, promoting initial selectivity of the thiol‐isocyanate reaction in a medium containing thiol, isocyanate, and acrylate functional groups. Films were prepared from thiol‐isocyanate‐acrylate ternary mixtures using 2‐acryloyloxyethylisocyanate and di‐, tri‐, and tetra‐functional thiols. The sequential thiol‐isocyanate, thiol‐acrylate, and acrylate homopolymerization reactions were monitored by infrared spectroscopy during film formation, whereas thermal and mechanical properties of the films were evaluated as a function of the chemical composition following polymerization. The results indicate that the network structures and material properties are tunable over a wide range of properties (Tg ~ 14–100 °C, FWHM ~ 8–46 °C), while maintaining nearly quantitative reactions, simply by controlling the component compositions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3255–3264, 2010  相似文献   

19.
20.
A simple and convenient procedure for the preparation of 2‐(substitutedbenzylsulfanyl)‐4,5‐dihydrothia‐zoles by the reaction of 4,5‐dihydro‐thiazole‐2‐thiol and benzyl bromides in acetone/K2CO3 condition has been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号