首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical‐chemical loop linked by redox couples such as Fe2+/Fe3+ and I?/I3? for photoelectrochemical H2 production and H2S chemical absorption redox reactions are reported. Using functionalized Si as photoelectrodes, H2S was successfully split into elemental sulfur and H2 with high stability and selectivity under simulated solar light. This new conceptual design will not only provide a possible route for using solar energy to convert H2S into valuable resources, but also sheds light on some challenging photochemical reactions such as CH4 activation and CO2 reduction.  相似文献   

2.
Bimetal‐S‐O composites have been rarely researched in electrochemical reduction of CO2. Now, an amorphous Ag‐Bi‐S‐O decorated Bi0 catalyst derived from Ag0.95BiS0.75O3.1 nanorods by electrochemical pre‐treatment was used for catalyzing eCO2RR, which exhibited a formate FE of 94.3 % with a formate partial current density of 12.52 mA cm?2 at an overpotential of only 450 mV. This superior performance was attributed to the attached amorphous Ag‐Bi‐S‐O substance. S could be retained in the amorphous region after electrochemical pre‐treatment only in samples derived from metal‐S‐O composites, and it would greatly enhance the formate selectivity by accelerating the dissociation of H2O. The existence of Ag would increase the current density, resulting in a higher local pH, which made the role of S in activating H2O more significantly and suppressed H2 evolution more effectively, thus endowing the catalyst with a higher formate FE at low overpotentials.  相似文献   

3.
Production of multicarbon products (C2+) from CO2 electroreduction reaction (CO2RR) is highly desirable for storing renewable energy and reducing carbon emission. The electrochemical synthesis of CO2RR catalysts that are highly selective for C2+ products via electrolyte‐driven nanostructuring is presented. Nanostructured Cu catalysts synthesized in the presence of specific anions selectively convert CO2 into ethylene and multicarbon alcohols in aqueous 0.1 m KHCO3 solution, with the iodine‐modified catalyst displaying the highest Faradaic efficiency of 80 % and a partial geometric current density of ca. 31.2 mA cm?2 for C2+ products at ?0.9 V vs. RHE. Operando X‐ray absorption spectroscopy and quasi in situ X‐ray photoelectron spectroscopy measurements revealed that the high C2+ selectivity of these nanostructured Cu catalysts can be attributed to the highly roughened surface morphology induced by the synthesis, presence of subsurface oxygen and Cu+ species, and the adsorbed halides.  相似文献   

4.
The present work describes the development of a selective, sensitive and stable sensing microsensor for scanning electrochemical microscopy (SECM) to measure H2O2 during electrochemical reduction of oxygen. The microsensor is based on graphene and Poly(3,4‐ethylenedioxythiophene) composite as support to iron (III) hexacyanoferrate (II) (PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor). The electrochemical properties of the PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor were investigated by cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM). The PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor showed an excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction with a diminution of the overpotential of about 500 mV in comparison to the process at a bare gold microelectrode. The microsensor presented excellent performance for two dimensional mapping of H2O2 by SECM in 0.1 mol L?1 phosphate buffer solution (pH 7.0). Under optimized conditions, a linear response range from 1 up to 1000 µmol L?1 was obtained with a sensitivity of 0.08 nA L µmol?1 and limit of detection of 0.5 µmol L?1.  相似文献   

5.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z‐scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z‐scheme photocatalysts combining water‐oxidation semiconductors (TiO2, Bi2WO6, and α‐Fe2O3) with CO2 reduction COFs (COF‐316/318) was synthesized and exhibited high photocatalytic CO2‐to‐CO conversion efficiencies (up to 69.67 μmol g?1 h?1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic‐semiconductor systems utilizing the Z‐scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor‐to‐COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

6.
Metal‐air batteries, especially Li‐air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO2 (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li2CO3, making the battery less rechargeable. To make the Li‐CO2 batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO2 reduction and evolution reactions and investigate the electrochemical behavior of Li‐CO2 batteries. Here, we demonstrate a rechargeable Li‐CO2 battery with a high reversibility by using B,N‐codoped holey graphene as a highly efficient catalyst for CO2 reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as‐prepared Li‐CO2 batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long‐term cycling stability over 200 cycles at a high current density of 1.0 A g−1. Our results open up new possibilities for the development of long‐term Li‐air batteries reusable under ambient conditions, and the utilization and storage of CO2.  相似文献   

7.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

8.
Light‐driven multielectron redox reactions (e.g., hydrogen (H2) evolution, CO2 reduction) have recently appeared at the front of solar‐to‐fuel conversion. In this Minireview, we focus on the recent advances in establishing semiconductor quantum dot (QD) assemblies to enhance the efficiencies of these light‐driven multielectron reduction reactions. Four models of QD assembly are established to promote the sluggish kinetics of multielectron transfer from QDs to cocatalysts, thus leading to an enhanced activity of solar H2 evolution or CO2 reduction. We also forecast the potential applications of QD assemblies in other multielectron redox reactions, such as nitrogen (N2) fixation and oxygen (O2) evolution from H2O.  相似文献   

9.
Light‐driven multielectron redox reactions (e.g., hydrogen (H2) evolution, CO2 reduction) have recently appeared at the front of solar‐to‐fuel conversion. In this Minireview, we focus on the recent advances in establishing semiconductor quantum dot (QD) assemblies to enhance the efficiencies of these light‐driven multielectron reduction reactions. Four models of QD assembly are established to promote the sluggish kinetics of multielectron transfer from QDs to cocatalysts, thus leading to an enhanced activity of solar H2 evolution or CO2 reduction. We also forecast the potential applications of QD assemblies in other multielectron redox reactions, such as nitrogen (N2) fixation and oxygen (O2) evolution from H2O.  相似文献   

10.
In this study, a laser‐induced graphene (LIG) loaded platinum nanoparticles (PtNPs) was prepared for precise, rapid and non‐enzymatic electrochemical detection of hydrogen peroxide (H2O2). The commercial PI films were used as the substrate of LIG. In order to improve the electrochemical performance of LIG, a layer of PtNPs catalyst was fabricated through a magnetron sputtering process on the surface of LIG (PtLIG). Under optimized conditions, a linear relationship between H2O2 reduction current and H2O2 concentration was recorded, the correlation coefficient R2 is 0.9919 with the detection limit of 0.1 μM (S/N=3) and the sensitivity of 248.4 μA mM?1cm?2. Moreover, the PtLIG exhibits excellent selectivity, reproducibility and repeatability. Because of these remarkable advantages, we believe that PtLIG will provide a wider range of applications in biosensors and bioelectronic devices.  相似文献   

11.
Visible‐light‐driven photoreduction of CO2 to energy‐rich chemicals in the presence of H2O without any sacrifice reagent is of significance, but challenging. Herein, Eosin Y‐functionalized porous polymers (PEosinY‐N, N=1–3), with high surface areas up to 610 m2 g?1, are reported. They exhibit high activity for the photocatalytic reduction of CO2 to CO in the presence of gaseous H2O, without any photosensitizer or sacrifice reagent, and under visible‐light irradiation. Especially, PEosinY‐1 derived from coupling of Eosin Y with 1,4‐diethynylbenzene shows the best performance for the CO2 photoreduction, affording CO as the sole carbonaceous product with a production rate of 33 μmol g?1 h?1 and a selectivity of 92 %. This work provides new insight for designing and fabricating photocatalytically active polymers with high efficiency for solar‐energy conversion.  相似文献   

12.
Catalytic C1 chemistry based on the activation/conversion of synthesis gas (CO+H2), methane, carbon dioxide, and methanol offers great potential for the sustainable development of hydrocarbon fuels to replace oil, coal, and natural gas. Traditional thermal catalytic processes used for C1 transformations require high temperatures and pressures, thereby carrying a significant carbon footprint. In comparison, solar‐driven C1 catalysis offers a greener and more sustainable pathway for manufacturing fuels and other commodity chemicals, although conversion efficiencies are currently too low to justify industry investment. In this Review, we highlight recent advances and milestones in light‐driven C1 chemistry, including solar Fischer–Tropsch synthesis, the water‐gas‐shift reaction, CO2 hydrogenation, as well as methane and methanol conversion reactions. Particular emphasis is placed on the rational design of catalysts, structure–reactivity relationships, as well as reaction mechanisms. Strategies for scaling up solar‐driven C1 processes are also discussed.  相似文献   

13.
Sustainable, low‐temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub‐quality or “sour” gas. We propose a unique method of activation to form a mixture of sulfur‐containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier such as H2. For this purpose, we investigated the H2S‐mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub‐quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground‐state CH3SH+H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical‐based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR).  相似文献   

14.
An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2O, a Ni‐SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2‐saturated NaHCO3 solution, and a proton‐conducting membrane enabled syngas production from CO2 and H2O with solar‐to‐syngas energy‐conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h?1 was recorded with a photoanodic N‐TiO2 nanorod array for highly stable CO production. The CO‐evolution rate reached a maximum of 154.9 mmol g?1 h?1 in the dark compartment of the APS cell. Scanning electrochemical–atomic force microscopy showed the localization of electrons on the single‐nickel‐atom sites of the Ni‐SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.  相似文献   

15.
This work shows a novel artificial donor–catalyst–acceptor triad photosystem based on a mononuclear C5H5‐RuH complex oxo‐bridged TiO2 hybrid for efficient CO2 photoreduction. An impressive quantum efficiency of 0.56 % for CH4 under visible‐light irradiation was achieved over the triad photocatalyst, in which TiO2 and C5H5‐RuH serve as the electron collector and CO2‐reduction site and the photon‐harvester and water‐oxidation site, respectively. The fast electron injection from the excited Ru2+ cation to TiO2 in ca. 0.5 ps and the slow backward charge recombination in half‐life of ca. 9.8 μs result in a long‐lived D+–C–A? charge‐separated state responsible for the solar‐fuel production.  相似文献   

16.
An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2O, a Ni‐SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2‐saturated NaHCO3 solution, and a proton‐conducting membrane enabled syngas production from CO2 and H2O with solar‐to‐syngas energy‐conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h?1 was recorded with a photoanodic N‐TiO2 nanorod array for highly stable CO production. The CO‐evolution rate reached a maximum of 154.9 mmol g?1 h?1 in the dark compartment of the APS cell. Scanning electrochemical–atomic force microscopy showed the localization of electrons on the single‐nickel‐atom sites of the Ni‐SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.  相似文献   

17.
《中国化学会会志》2018,65(8):960-969
In the present study, Fe2+ and Ni2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 (γ‐Fe2O3@HAp‐Fe2+ and γ‐Fe2O3@HAp‐Ni2+) with a high surface area has been synthesized and characterized by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), and scanning electron microscope (SEM) techniques. Then, γ‐Fe2O3@HAp‐Fe2+ and γ‐Fe2O3@HAp‐Ni2+ were used as a new and magnetically recoverable nano catalyst for the selective oxidation of sulfides to sulfoxides with 33% aqueous H2O2 (0.5 mL) as an oxidant at room temperature in good to excellent yields and short reaction time. Nontoxicity of reagent, mild reaction condition, inexpensive and high catalytic activity, simple experimental procedure, short period of conversion and excellent yields, and ease of recovery from the reaction mixture using an external magnet are the advantages of the present method.  相似文献   

18.
A long wavelength emission fluorescent (612 nm) chemosensor with high selectivity for H2PO4? ions was designed and synthesized according to the excited state intramolecular proton transfer (ESIPT). The sensor can exist in two tautomeric forms ('keto' and 'enol') in the presence of Fe3+ ion, Fe3+ may bind with the 'keto' form of the sensor. Furthermore, the in situ generated GY‐Fe3+ ensemble could recover the quenched fluorescence upon the addition of H2PO4? anion resulting in an off‐on‐type sensing with a detection limit of micromolar range in the same medium, and other anions, including F?, Cl?, Br?, I?, AcO?, HSO4?, ClO4? and CN? had nearly no influence on the probing behavior. The test strips based on 2‐[2‐hydroxy‐4‐(diethylamino) phenyl]‐1H‐imidazo[4,5‐b]phenazine and Fe3+ metal complex ( GY‐Fe3+ ) were fabricated, which could act as convenient and efficient H2PO4? test kits.  相似文献   

19.
Electrochemical reduction of carbon dioxide (CO2) to CO is regarded as an efficient method to utilize the greenhouse gas CO2, because the CO product can be further converted into high value‐added chemicals via the Fisher–Tropsch process. Among all electrocatalysts used for CO2‐to‐CO reduction, Au‐based catalysts have been demonstrated to possess high selectivity, but their precious price limits their future large‐scale applications. Thus, simultaneously achieving high selectivity and reasonable price is of great importance for the development of Au‐based catalysts. Here, we report Ag@Au core–shell nanowires as electrocatalyst for CO2 reduction, in which a nanometer‐thick Au film is uniformly deposited on the core Ag nanowire. Importantly, the Ag@Au catalyst with a relative low Au content can drive CO generation with nearly 100 % Faraday efficiency in 0.1 m KCl electrolyte at an overpotential of ca. ?1.0 V. This high selectivity of CO2 reduction could be attributed to a suitable adsorption strength for the key intermediate on Au film together with the synergistic effects between the Au shell and Ag core and the strong interaction between CO2 and Cl? ions in the electrolyte, which may further pave the way for the development of high‐efficiency electrocatalysts for CO2 reduction.  相似文献   

20.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号