首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
To explore molecular recognition of biomolecules in the complex environment of the extracellular matrix, we utilized two fluorescent poly(p-phenyleneethynylene)s bearing either cationic alkylammonium or negatively charged carboyxlate side chains. While incubation of live NIH 3T3 fibroblast cells with the cationic polymer yielded perinuclear punctate staining reminiscent of endocytotic vesicles, the carboxylated polymer revealed a characteristic filamentous staining pattern. Histochemical and immunofluorescence studies demonstrated that the anionic PPE selectively binds to fibronectin fibrils of the extracellular matrix. An in vitro binding study revealed a dissociation constant of approximately 100 nM for the fibronectin-polymer complex. Both polymers showed bright two-photon excited emission as well as low toxicity, rendering them well-suited for live cell imaging studies. The studies demonstrate that selective molecular recognition of biomolecules in the complex environment of the extracellular matrix can be achieved by means of nonspecific low-affinity polyvalent interactions.  相似文献   

2.
Macromolecular conjugates enable simultaneous binding of multiple ligands on one biological entity and these polyvalent interactions can be collectively stronger than the corresponding monovalent ligands. We have synthesized macromolecules and conjugated them with a lectin (Helix Pomatia lectin, HPA), and an antibody, both with shown affinities to certain bacteria. The binding ability was studied by flow cytometry and the results showed that the affinity of the biomolecules was greatly enhanced due to the polyvalent effect.  相似文献   

3.
An ability to promote therapeutic immune cells to recognize cancer cells is important for the success of cell-based cancer immunotherapy. We present a synthetic method for functionalizing the surface of natural killer (NK) cells with a supramolecular aptamer-based polyvalent antibody mimic (PAM). The PAM is synthesized on the cell surface through nucleic acid assembly and hybridization. The data show that PAM has superiority over its monovalent counterpart in powering NKs to bind to cancer cells, and that PAM-engineered NK cells exhibit the capability of killing cancer cells more effectively. Notably, aptamers can, in principle, be discovered against any cell receptors; moreover, the aptamers can be replaced by any other ligands when developing a PAM. Thus, this work has successfully demonstrated a technology platform for promoting interactions between immune and cancer cells.  相似文献   

4.
An ability to promote therapeutic immune cells to recognize cancer cells is important for the success of cell‐based cancer immunotherapy. We present a synthetic method for functionalizing the surface of natural killer (NK) cells with a supramolecular aptamer‐based polyvalent antibody mimic (PAM). The PAM is synthesized on the cell surface through nucleic acid assembly and hybridization. The data show that PAM has superiority over its monovalent counterpart in powering NKs to bind to cancer cells, and that PAM‐engineered NK cells exhibit the capability of killing cancer cells more effectively. Notably, aptamers can, in principle, be discovered against any cell receptors; moreover, the aptamers can be replaced by any other ligands when developing a PAM. Thus, this work has successfully demonstrated a technology platform for promoting interactions between immune and cancer cells.  相似文献   

5.
The controlled addition of structurally defined components to live cell membranes can facilitate the molecular level analysis of cell surface phenomena. Here we demonstrate that cell surfaces can be engineered to display synthetic bioactive polymers at defined densities by exogenous membrane insertion. The polymers were designed to mimic native cell-surface mucin glycoproteins, which are defined by their dense glycosylation patterns and rod-like structures. End-functionalization with a hydrophobic anchor permitted incorporation into the membranes of live cultured cells. We probed the dynamic behavior of cell-bound glycopolymers bearing various hydrophobic anchors and glycan structures using fluorescence correlation spectroscopy (FCS). Their diffusion properties mirrored those of many natural membrane-associated biomolecules. Furthermore, the membrane-bound glycopolymers were internalized into early endosomes similarly to endogenous membrane components and were capable of specific interactions with protein receptors. This system provides a platform to study cell-surface phenomena with a degree of chemical control that cannot be achieved using conventional biological tools.  相似文献   

6.
Found throughout biology , polyvalent interactions are characterized by the simultaneous binding of multiple ligands on one biological entity to multiple receptors on another (top part of the illustration) and have a number of characteristics that monovalent interactions do not (bottom). In particular, polyvalent interactions can be collectively much stronger than corresponding monovalent interactions, and they can provide the basis for mechanisms of both agonizing and antagonizing biological interactions that are fundamentally different from those available in monovalent systems.  相似文献   

7.
Reported is a new shell‐based spectroscopic platform, named mechanical trap surface‐enhanced Raman spectroscopy (MTSERS), for simultaneous capture, profiling, and 3D microscopic mapping of the intrinsic molecular signatures on the membrane of single live cells. By leveraging the functionalization of the inner surfaces of the MTs with plasmonic gold nanostars, and conformal contact of the cell membrane, MTSERS permits excellent signal enhancement, reliably detects molecular signatures, and allows non‐perturbative, multiplex 3D surface imaging of analytes, such as lipids and proteins on the surface of single cells. The demonstrated ability underscores the potential of MTSERS to perform 3D spectroscopic microimaging and to furnish biologically interpretable, quantitative, and dynamic molecular maps in live cell populations.  相似文献   

8.
Butelase‐mediated ligation (BML) can be used to modify live bacterial cell surfaces with diverse cargo molecules. Surface‐displayed butelase recognition motif NHV was first introduced at the C‐terminal end of the anchoring protein OmpA on E. coli cells. This then served as a handle of BML for the functionalization of E. coli cell surfaces with fluorescein and biotin tags, a tumor‐associated monoglycosylated peptide, and mCherry protein. The cell‐surface ligation reaction was achieved at low concentrations of butelase and the labeling substrates. Furthermore, the fluorescein‐labeled bacterial cells were used to show the interactions with cultured HeLa cells and with macrophages in live transgenic zebrafish, capturing the latter's powerful phagocytic effect in action. Together these results highlight the usefulness of butelase 1 in live bacterial cell surface engineering for novel applications.  相似文献   

9.
Butelase-mediated ligation (BML) can be used to modify live bacterial cell surfaces with diverse cargo molecules. Surface-displayed butelase recognition motif NHV was first introduced at the C-terminal end of the anchoring protein OmpA on E. coli cells. This then served as a handle of BML for the functionalization of E. coli cell surfaces with fluorescein and biotin tags, a tumor-associated monoglycosylated peptide, and mCherry protein. The cell-surface ligation reaction was achieved at low concentrations of butelase and the labeling substrates. Furthermore, the fluorescein-labeled bacterial cells were used to show the interactions with cultured HeLa cells and with macrophages in live transgenic zebrafish, capturing the latter's powerful phagocytic effect in action. Together these results highlight the usefulness of butelase 1 in live bacterial cell surface engineering for novel applications.  相似文献   

10.
We have used our ability to control beta-peptide secondary structure in order to explore the effects of conformational stability and geometry of guanidinium display on cell entry. Both of these factors affect the rate and relative amount of beta-peptide accumulation in the cytoplasm and nucleus of live HeLa cells. These beta-peptides do not show significant differences in cell surface binding, implying that structure and guanidinium display are important in a later step in cell entry than initial surface binding.  相似文献   

11.
We fabricate the high-performance probes based on Au nanoparticles (AuNP) for detection of live cancer cell. AuNP were synthesized with narrow sized distribution (ca. 10 nm) by Au salt reduction method and deposited onto the aminated substrate as a cross-linker and hot spot. Herein, AuNP has enabled the easy and efficient immobilization of the antibody (Cetuximab), which can selectively interact with epidermal growth factor receptor (EGFR) on the surface of epidermal cancer, as detecting moiety onto the AuNP-deposited substrate without nanolithography process. After conjugation of Cetuximab with AuNP-deposited substrate, Cetuximab-conjugated probe as a live cancer cell detector (LCCD) could detect EGFR-highexpressed A431 cells related to epithelial cancer with 54-times larger specificity and sensitivity in comparison with EGFR-deficient MCF7 cells. This implies that AuNP-based probes demonstrate abundant potentials for detection and separation of small biomolecules, cells and other chemicals.  相似文献   

12.
A novel strategy for the surface functionalization of emulsion‐templated highly porous (polyHIPE) materials as well as its application to in vitro 3D cell culture is presented. A heterobifunctional linker that consists of an amine‐reactive N‐hydroxysuccinimide ester and a photoactivatable nitrophenyl azide, N‐sulfosuccinimidyl‐6‐(4′‐azido‐2′‐nitrophenylamino)hexanoate (sulfo‐SANPAH), is utilized to functionalize polyHIPE surfaces. The ability to conjugate a range of compounds (6‐aminofluorescein, heptafluorobutylamine, poly(ethylene glycol) bis‐amine, and fibronectin) to the polyHIPE surface is demonstrated using fluorescence imaging, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. Compared to other existing surface functionalization methods for polyHIPE materials, this approach is facile, efficient, versatile, and benign. It can also be used to attach biomolecules to polyHIPE surfaces including cell adhesion‐promoting extracellular matrix proteins. Cell culture experiments demonstrated that the fibronectin‐conjugated polyHIPE scaffolds improve the adhesion and function of primary human endometrial stromal cells. It is believed that this approach can be employed to produce the next generation of polyHIPE scaffolds with tailored surface functionality, enhancing their application in 3D cell culture and tissue engineering whilst broadening the scope of applications to a wider range of cell types.  相似文献   

13.
The design of polyvalent molecules, presenting multiple copies of a specific ligand, represents a promising strategy to inhibit pathogens and toxins. The ability to control independently the valency and the spacing between ligands would be valuable for elucidating structure–activity relationships and for designing potent polyvalent molecules. To that end, we designed monodisperse polypeptide‐based polyvalent inhibitors of anthrax toxin in which multiple copies of an inhibitory toxin‐binding peptide were separated by flexible peptide linkers. By tuning the valency and linker length, we designed polyvalent inhibitors that were over four orders of magnitude more potent than the corresponding monovalent ligands. This strategy for the rational design of monodisperse polyvalent molecules may not only be broadly applicable for the inhibition of toxins and pathogens, but also for controlling the nanoscale organization of cellular receptors to regulate signaling and the fate of stem cells.  相似文献   

14.
A simple linear relationship between the functionalization reaction energies for the exohedral monovalent addition on the surface of an ideal, infinitely long, single-walled carbon nanotube (SWCNT) and the reciprocal SWCNT radius has been derived employing the hard?Csoft acid basis principle and the tight binding model. The slope of the derived linear relationship is a function of the effective number of valence electrons involved in the functionalization reaction. The intercept of the derived linear relationship, equal to the reaction energies on a planar graphite surface, is a function of the electrophilicity of the monovalent addend and of the condensed Fukui function of its reacting atom. The theoretical predictions of this simple formula are coherent with the computational density functional theory data reported in the literature.  相似文献   

15.
The applicability of click chemistry for high-density functionalization of mesoporous silica is demonstrated. The mild conditions of the copper(I)-catalyzed Huisgen reaction allow for a surface functionalization with intact biomolecules. The high covalent enzyme functionalization density under simultaneous retention of enzyme activity and the absence of leaching demonstrate the promising potential of this approach.  相似文献   

16.
In this article, we compare structures of protonated poly(2-vinylpyridine) globules (2D compact coils on the surface) adsorbed on the mica surface from aqueous solution when the shrinking is brought about either by discharging the molecules at an elevated pH or by adding monovalent and polyvalent salts. We study the structure of the PE coils using in situ atomic force microscopy experiments in aqueous solutions in a liquid cell. The abrupt coil-to-globule transition caused by pH changes and the discharge of polymer chains resulted in compact globules. If the pH corresponding to extended coil conformation remains unchanged, the coil shrinks due to the added salt. The size of the globule in the latter case corresponds to the unperturbed dimension of the polymer coil. There is no essential difference in the dimensions of the globules as obtained in the presence of monovalent and multivalent counterions for the studied ionic strength. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1623–1627, 2010  相似文献   

17.
Strategies to surface‐functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para‐dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half‐life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N‐hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier‐transformed infrared spectroscopy investigation revealed the successful binding, while a gel permeation chromatography study showed that degradation did not occur under these conditions. Coupling of a rhodamine dye to the N‐hydroxysuccinimide esters on the surface of a PFPA‐functionalized scaffold via its amine linker showed a homogenous staining of the PPDO in laser confocal microscopy. The PFPA method is therefore applicable even to the surface functionalization of hydrolytically labile polymers, and it was demonstrated that PFPA chemistry may serve as a versatile tool for the (bio‐)functionalization of PPDO scaffolds.  相似文献   

18.
The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC‐3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation.  相似文献   

19.
The synthesis of two cluster compounds, one containing six secondary dialkylammonium ion centers and the other possessing six benzo-m-phenylene[25]crown-8 (BMP25C8) macrocycles, both appended to hexakis(thiophenyl)benzene cores, is described. The binding of these clusters with complementary mono- and divalent ligands is investigated with NMR spectroscopy to probe polyvalency in these unnatural recognition systems. The ability of the two different families of clusters to bind complementary monovalent ligands is compared with that of the monovalent receptor pair, namely the dibenzylammonium ion and BMP25C8. This comparison is made possible by determining an average association constant (K(AVE)) for the binding of each recognition site on the cluster with the corresponding monovalent ligand. We have found that the clustering of recognition sites together in one molecule is detrimental to their individual abilities to bind monovalent ligands. In the case of the polyvalent interaction between the hexakisBMP25C8 cluster and divalent dialkylammonium ions, an association constant, K(POLY), was calculated from the value of K(AVE) determined for the complexation of the individual component recognition sites. This polyvalent interaction is significantly stronger than that associated with the averaged monovalent interactions.  相似文献   

20.
Quantum dots are a group of inorganic nanomaterials exhibiting exceptional optical and electronic properties which impart distinct advantages over traditional fluorescent organic dyes in terms of tunable broad excitation and narrow emission spectra, signal brightness, high quantum yield and photo-stability. Aqueous solubility and surface functionalization are the most common problems for QDs employed in biological research. This review addresses the recent research progress made to improve aqueous solubility, functionalization of biomolecules to QD surface and the poorly understood chemistry involved in the steps of bio-functionalization of such nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号