首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper complexes with chiral iminopyridine ligands were screened for their catalytic efficiency in carbene (cyclopropanation) and nitrene transfer reactions (aziridination, C? H amidation). Both pre‐formed and in situ formed complexes were considered. The results highlighted the poor catalytic efficiency of these complexes in cyclopropanation reactions employing methyl phenyldiazoacetate as the carbene source, whereas better results were obtained in nitrene transfer reactions, particularly in the amidation of C? H bonds, albeit the enantioselectivity of the reactions was negligible in nearly all cases. Finally, copper complexes were also found to promote an interesting oxidative functionalization of alkynes with PhI(OAc)2 at room temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
High‐valent terminal copper–nitrene species have been postulated as key intermediates in copper‐catalyzed aziridination and amination reactions. The high reactivity of these intermediates has prevented their characterization for decades, thereby making the mechanisms ambiguous. Very recently, the Lewis acid adduct of a copper–nitrene intermediate was trapped at ?90 °C and shown to be active in various oxidation reactions. Herein, we describe for the first time the synthesis and spectroscopic characterization of a terminal copper(II)–nitrene radical species that is stable at room temperature in the absence of any Lewis acid. The azide derivative of a triazamacrocyclic ligand that had previously been utilized in the stabilization of aryl–CuIII intermediates was employed as an ancillary ligand in the study. The terminal copper(II)–nitrene radical species is able to transfer a nitrene moiety to phosphines and abstract a hydrogen atom from weak C?H bonds, leading to the formation of oxidized products in modest yields.  相似文献   

3.
Bis(NHC)ruthenium(II)–porphyrin complexes were designed, synthesized, and characterized. Owing to the strong donor strength of axial NHC ligands in stabilizing the trans M?CRR′/M?NR moiety, these complexes showed unprecedently high catalytic activity towards alkene cyclopropanation, carbene C? H, N? H, S? H, and O? H insertion, alkene aziridination, and nitrene C? H insertion with turnover frequencies up to 1950 min?1. The use of chiral [Ru(D4‐Por)(BIMe)2] ( 1 g ) as a catalyst led to highly enantioselective carbene/nitrene transfer and insertion reactions with up to 98 % ee. Carbene modification of the N terminus of peptides at 37 °C was possible. DFT calculations revealed that the trans axial NHC ligand facilitates the decomposition of diazo compounds by stabilizing the metal–carbene reaction intermediate.  相似文献   

4.
Cundari TR  Dinescu A  Kazi AB 《Inorganic chemistry》2008,47(21):10067-10072
Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.  相似文献   

5.
[FeIII(F20‐tpp)Cl] (F20‐tpp=meso‐tetrakis(pentafluorophenyl)porphyrinato dianion) is an effective catalyst for imido/nitrene insertion reactions using sulfonyl and aryl azides as nitrogen source. Under thermal conditions, aziridination of aryl and alkyl alkenes (16 examples, 60–95 % yields), sulfimidation of sulfides (11 examples, 76–96 % yields), allylic amidation/amination of α‐methylstyrenes (15 examples, 68–83 % yields), and amination of saturated C? H bonds including that of cycloalkanes and adamantane (eight examples, 64–80 % yields) can be accomplished by using 2 mol % [FeIII(F20‐tpp)Cl] as catalyst. Under microwave irradiation conditions, the reaction time of aziridination (four examples), allylic amination (five examples), sulfimidation (two examples), and amination of saturated C? H bonds (three examples) can be reduced by up to 16‐fold (24–48 versus 1.5–6 h) without significantly affecting the product yield and substrate conversion.  相似文献   

6.
The past few decades have witnessed extensive efforts to disclose the unique reactivity of metal–nitrenes, because they could be a powerful synthetic tool for introducing the amine functionality into unactivated chemical bonds. The reactivity of metal–nitrenes, however, is currently mainly confined to aziridination (an insertion into a C=C bond) and C−H amination (an insertion into a C−H bond). Nitrene insertion into an amide C−N bond, however, has not been reported so far. In this work we have developed a rhodium-catalyzed one-nitrogen insertion into amide C−N and sulfonamide S−N bonds. Experimental and theoretical analyses based on density functional theory indicate that the formal amide insertion proceeds via a rhodium-coordinated ammonium ylide formed between the nitrene and the amide nitrogen, followed by acyl group transfer concomitant with C−N bond cleavage. Mechanistic studies have allowed rationalization of the origin of the chemoselectivity observed between the C−H and amide insertion reactions. The methodology presented herein is the first example of an insertion of nitrene into amide bonds and provides facile access to unique diazacyclic systems with an N−N bond linkage.  相似文献   

7.
A facile one-pot procedure for copper-catalyzed PhI(OAc)2-mediated asymmetric alkene aziridination had been developed. Commercially available PhI(OAc)2 and sulfonamides were used to generate the nitrene precursors (PhINR) in situ for olefin aziridination. This one-pot procedure had been optimized using 4-nitrobenzenesulfonamide as the nitrene source. With 5 mol % of the chiral copper catalyst, these conditions afforded 94% yield of the isolated product with 75% ee. We had also developed a simple and rapid method to monitor the rate of this one-pot aziridination.  相似文献   

8.
A method to prepare α,α‐acyl amino acid derivatives efficiently by Cu(OTf)2+1,10‐phenanthroline (1,10‐phen)‐catalyzed amination of 1,3‐dicarbonyl compounds with PhI?NSO2Ar is described. The mechanism is thought to initially involve aziridination of the enolic form of the substrate, formed in situ through coordination to the Lewis acidic metal catalyst, by the putative copper–nitrene/imido species generated from the reaction of the metal catalyst with the iminoiodane source. Subsequent ring opening of the resultant aziridinol adduct under the Lewis acidic conditions then provided the α‐aminated product. The utility of this method was exemplified by the enantioselective synthesis of a precursor of 3‐styryl‐2‐benzoyl‐L ‐alanine.  相似文献   

9.
The first Co/Pd‐cocatalyzed intramolecular C?H amination and aziridination reactions were developed. Sulfamate esters were converted to oxathiazinanes by using CoPd(OAc)4 as catalyst and PhI(OAc)2 as oxidant. The mutual presence of both Co and Pd is crucial for the catalytic activity. This combination of two metals with simple acetate ligands provides an economical alternative to the Rh‐catalyzed insertion of nitrenoids into C?H bonds.  相似文献   

10.
A significant influence of the electronic features of poly(pyrazolyl)borate ligands on the efficiency of the copper-catalyzed aziridination reaction has been noted. Electron-deficient, bidentate di(pyrazolyl)borates in conjunction with copper(II) chloride generated the most effective catalyst system for the aziridination of a variety of olefins.  相似文献   

11.
The atroposelective synthesis of axially chiral styrenes remains a formidable challenge due to their relatively lower rotational barriers compared to the biaryl atropoisomers. Herein, we describe the construction of axially chiral styrenes through PdII‐catalyzed atroposelective C?H olefination, using a bulky amino amide as a transient chiral auxiliary. Various axially chiral styrenes were produced with good yields and high enantioselectivity (up to 95 % yield and 99 % ee). Carboxylic acid derivatives of the resulting axially chiral styrenes showed superior enantiocontrol over the biaryl counterparts in CoIII‐catalyzed enantioselective C(sp3)?H amidation of thioamide. Mechanistic studies suggest that C?H cleavage is the enantioselectivity‐determining step.  相似文献   

12.
Thermolysis of the iron(IV) nitride complex [PhB(tBuIm)3Fe?N] with styrene leads to formation of the high‐spin iron(II) aziridino complex [PhB(tBuIm)3Fe‐N(CH2CHPh)]. Similar aziridination occurs with both electron‐rich and electron‐poor styrenes, while bulky styrenes hinder the reaction. The aziridino complex [PhB(tBuIm)3Fe‐N(CH2CHPh)] acts as a nitride synthon, reacting with electron‐poor styrenes to generate their corresponding aziridino complexes, that is, aziridine cross‐metathesis. Reaction of [PhB(tBuIm)3Fe‐N(CH2CHPh)] with Me3SiCl releases the N‐functionalized aziridine Me3SiN(CH2CHPh) while simultaneously generating [PhB(tBuIm)3FeCl]. This closes a synthetic cycle for styrene azirdination by a nitride complex. While the less hindered iron(IV) nitride complex [PhB(MesIm)3Fe?N] reacts with styrenes below room temperature, only bulky styrenes lead to tractable aziridino products.  相似文献   

13.
Azidoformates are interesting potential nitrene precursors, but their direct photochemical activation can result in competitive formation of aziridination and allylic amination products. Herein, we show that visible‐light‐activated transition‐metal complexes can be triplet sensitizers that selectively produce aziridines through the spin‐selective photogeneration of triplet nitrenes from azidoformates. This approach enables the aziridination of a wide range of alkenes and the formal oxyamination of enol ethers using the alkene as the limiting reagent. Preparative‐scale aziridinations can be easily achieved under continuous‐flow conditions.  相似文献   

14.
Photocatalytic generation of nitrenes and radicals can be used to tune or even control their reactivity. Photocatalytic activation of sulfonyl azides leads to the elimination of N2 and the resulting reactive species initiate C−H activations and amide formation reactions. Here, we present reactive radicals that are generated from sulfonyl azides: sulfonyl nitrene radical anion, sulfonyl nitrene and sulfonyl amidyl radical, and test their gas phase reactivity in C−H activation reactions. The sulfonyl nitrene radical anion is the least reactive and its reactivity is governed by the proton coupled electron transfer mechanism. In contrast, sulfonyl nitrene and sulfonyl amidyl radicals react via hydrogen atom transfer pathways. These reactivities and detailed characterization of the radicals with vibrational spectroscopy and with DFT calculations provide information necessary for taking control over the reactivity of these intermediates.  相似文献   

15.
For the first time, a highly regioselective intermolecular sulfonylamidation unactivated secondary Csp3?H bond has been achieved using IrIII catalysts. The introduced N,N’‐bichelating ligand plays a crucial role in enabling iridium–nitrene insertion into a secondary Csp3?H bond via an outer‐sphere pathway. Mechanistic studies and density functional theory (DFT) calculations demonstrated that a two‐electron concerted nitrene insertion was involved in this Csp3?H amidation process. This method tolerates a broad range of linear and branched‐chain N‐alkylamides, and provides efficient access to diverse γ‐sulfonamido‐substituted aliphatic amines.  相似文献   

16.
Undirected C(sp3)?H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C?H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C?H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C?H bonds over tertiary and benzylic C?H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C?H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C?H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R. and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R. to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C?H amidation selectivity in the absence of directing groups.  相似文献   

17.
An efficient and simple protocol for N‐bromosuccinimide (NBS)‐mediated styrenes aziridination using amides as the nitrenoid source has been developed. This aziridination affords desired products in moderate to good yields without using transition metal catalyst under very mild reaction condition.  相似文献   

18.
The rhodium-catalyzed decomposition of N-tosyloxycarbamates to generate metal nitrenes which undergo intramolecular C-H insertion or aziridination reaction is described. Aliphatic N-tosyloxycarbamates produce oxazolidinones with high yields and stereospecificity through insertion in benzylic, tertiary, and secondary C-H bonds. Intramolecular aziridination occurs with allylic N-tosyloxycarbamates to produce aziridines as single diastereomers. The reaction proceeds at room temperature using a rhodium catalyst and an excess of potassium carbonate and does not require the use of strong oxidant, such as hypervalent iodine reagents. A rhodium nitrene species is presumably involved, as both reactions are stereospecific.  相似文献   

19.
We synthesized new Ru(salen)(CO) complexes of high durability and achieved aziridination with good to excellent enantioselectivity by using azide compounds that contain an easily removable N‐sulfonyl group, such as the 2‐(trimethylsilyl)ethanesulfonyl group, as a nitrene precursor. Aziridination of less‐reactive α,β‐unsaturated esters (and amides) proceeded with excellent enantioselectivities, from which it is inferred that an electrophilic species is the active species of this reaction. The present asymmetric aziridination provides a useful tool for introducing optically active nonprotected amine groups.  相似文献   

20.
A copper‐mediated C?H chalcogenation of triazoles has been achieved by weak coordination. The user‐friendly protocol showed high functional‐group tolerance and ample substrate scope, yielding fully substituted 1,2,3‐triazoles with complete positional site‐selectivity. The C?H selenylation could likewise be achieved by means of copper catalysis. Our findings highlight for the first time that weak O‐coordination can outcompete the strong N,N‐bidentate coordination mode in C?H functionalization technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号