首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical reduction of CO2 into energy‐dense chemical feedstock and fuels provides an attractive pathway to sustainable energy storage and artificial carbon cycle. Herein, we report the first work to use atomic Ir electrocatalyst for CO2 reduction. By using α‐Co(OH)2 as the support, the faradaic efficiency of CO could reach 97.6 % with a turnover frequency (TOF) of 38290 h?1 in aqueous electrolyte, which is the highest TOF up to date. The electrochemical active area is 23.4‐times higher than Ir nanoparticles (2 nm), which is highly conductive and favors electron transfer from CO2 to its radical anion (CO2.?). Moreover, the more efficient stabilization of CO2.? intermediate and easy charge transfer makes the atomic Ir electrocatalyst facilitate CO production. Hence, α‐Co(OH)2‐supported atomic Ir electrocatalysts show enhanced CO2 activity and stability.  相似文献   

2.
Salvia officinalis L. (sage) is an important industrial plant used both for food and pharmaceutical purposes. The terpene fraction of this plant is responsible for many of its therapeutic and culinary properties. We used different extraction methods Tenax TA® purge and trap, headspace (HS) solid‐phase microextraction, HS sorptive extraction, and stir bar sorptive extraction to analyze the terpene fraction extracted from sage tea by GC–MS. Twenty compounds were identified, including α‐, β‐thujone, and several other oxygenated monoterpenes (1,8‐cineole, linalool, camphor, boneol, and bornyl acetate) and oxygenated sesquiterpenes (caryophyllene oxide, viridiflorol, humulene epoxide I, II, and III). Tenax TA® and HS sorptive extraction extracted a lower number of identified compounds, whereas HS solid‐phase microextraction allowed the complete extraction of volatiles with particular reference to α‐ and β‐thujone. The importance of the determination of thujones content in sage herbal tea is also discussed.  相似文献   

3.
The palladium‐catalyzed arylation/alkylation of ortho‐C?H bonds in N‐benzoyl α‐amino ester derivatives is described. In such a system both the NH‐amido and the CO2R groups in the α‐amino ester moieties play a role in successful C?H activation/C?C bond formation using iodoaryl coupling partners. A wide variety of functional groups and electron‐rich/deficient iodoarenes are tolerated. The yields obtained range from 20 to 95 %.  相似文献   

4.
The incorporation of CO2 into organic compounds is currently one of the most active research topics in organic chemistry, because CO2 is an abundant, inexpensive, nontoxic, and renewable C1 source. However, CO2 is also a thermodynamically stable and kinetically inert gaseous compound, and as such, special strategies are required to activate CO2 and incorporate it into organic compounds. In particular, because the carbon atom adjacent to the nitrogen atom of amine derivatives is positively charged, umpolung carboxylation, which is a difficult chemical process, should be considered for the production of α‐amino acids by using CO2. In this Minireview, we summarize recent synthetic methods for α‐amino acids that use CO2 as a carboxylic acid unit.  相似文献   

5.
Despite a significant advancement in preparing metastable materials, one common problem is the strict and precious reaction conditions due to their metastable structures. Herein, we achieved the preparation of high‐temperature stabilized metastable α‐MoC1?x by mounting zinc atoms into its lattice structure. Such a structural construction could suppress the phase transformation from α‐MoC1?x to β‐Mo2C through restricting the displacement of Mo atoms upon increased temperature. The resultant metastable α‐MoC1?x can be stabilized up to 1000 °C and this stability temperature is the highest for the metastable α‐MoC1?x so far. Synchrotron X‐ray absorption spectroscopy (XAS) and X‐ray photoelectron spectroscopy (XPS) confirm the structure of Zn‐mounted α‐MoC1?x. Density functional theory (DFT) calculations reveal that the introduction of the Zn atoms in the lattice structure of α‐MoC1?x could significantly decrease the energy difference (ΔE) between α‐MoC1?x and β‐Mo2C, thus effectively suppressing the phase transformation from α‐MoC1?x to β‐Mo2C and accordingly maintaining the high‐temperature stability of α‐MoC1?x. This novel strategy can be used as a universal method to be extended to synthesize metastable α‐MoC1?x from different precursors or other mounted elements. Moreover, the optimal product exhibits excellent lithium storage performances in terms of the cycling stability and rate performance.  相似文献   

6.
A new method for the synthesis of fluorinated α‐C‐glycosides is described. The reactions between highly electrophilic radicals (fluorinated or unfluorinated) and a 2‐benzyloxyglucal or galactal provide 2‐keto‐D ‐arabino‐ or 2‐keto‐D ‐lyxo‐hexopyranosides through an addition/fragmentation process. Sodium borohydride mediated or Meerwein–Ponndorf–Verley (MPV) reduction of these compounds provides α‐C‐glycosides that feature appropriate anchoring groups for further synthetic elaboration. The presence of CF2CO2iPr or CF2Br groups at the pseudo‐anomeric position allows efficient reduction/olefination or Br/Li‐exchange/nucleophilic‐addition sequences. These transformations open the way for the synthesis of fluorinated C‐glycosidic analogues of glycoconjugates.  相似文献   

7.
An efficient chemoselective general procedure for the synthesis of γ‐substituted β,γ‐unsaturated α‐ketomethylthioesters from α,β‐unsaturated ketones has been achieved through an unprecedented PPh3?HBr‐DMSO mediated oxidative bromination and Kornblum oxidation sequence. The newly developed reagent system serves admirably for the synthesis of α‐bromoenals from enals. Furthermore, AuCl3‐catalyzed efficient access to 3(2H)‐furanones from the above intermediates under extremely mild conditions are described.  相似文献   

8.
The solid phase transition mechanism of α‐ to β‐form crystal upon specific treating with supercritical CO2 + cosolvent on original pure α and mixed (α+β) form syndiotactic polystyrene (sPS) was investigated, using wide angle X‐ray diffraction and differential scanning calorimetry measurements as a function of temperature, pressure, and cosolvent content. As in the supercritical CO2, sPS in supercritical CO2 + cosolvent underwent solid phase transitions from α‐ to β‐form, and higher temperature or higher pressure favored this transformation. Due to the higher dipole moment of acetone, small amounts of acetone used as cosolvent with CO2 made the transition of α‐ to β‐form occur at lower temperature and pressure than in supercritical CO2, and made the α‐form crystal completely transform to β‐form in the original mixed (α+β) form, whereas ethanol did not. The original β‐form crystal in the original mixed (α+β) form sample acted as the nucleus of new β‐form crystal in the presence of cosolvent as it did in supercritical CO2, when compared with the original pure α‐form sample. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1625–1636, 2007  相似文献   

9.
Host–guest interactions between α‐, β‐ and γ‐cyclodextrins and vanadocene dichloride (Cp2VCl2) have been investigated by a combination of thermogravimetric analysis, differential scanning calorimetry, powder X‐ray diffraction and solid‐state and solution electron paramagnetic resonance (EPR) spectroscopy. The solid‐state results demonstrated that only β‐ and γ‐cyclodextrins form 1:1 inclusion complexes, while α‐cyclodextrin does not form an inclusion complex with Cp2VCl2. The β‐ and γ‐CD–Cp2VCl2 inclusion complexes exhibited anisotropic electron‐51V (I = 7/2) hyperfine coupling constants whereas the α‐CD–Cp2VCl2 system showed only an asymmetric peak with no anisotropic hyperfine constant. On the other hand, solution EPR spectroscopy showed that α‐cyclodextrin (α‐CD) may be involved in weak host–guest interactions in equilibrium with free vanadocene species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

11.
A new α‐C(sp3)? H alkynylation of unactivated tertiary aliphatic amines with 1‐iodoalkynes as radical alkynylating reagents in the presence of [Au2(μ‐dppm)2]2+ in sunlight provides propargylic amines. Based on mechanistic studies, a C? C coupling of an α‐aminoalkyl radical and an alkynyl radical is proposed for the C(sp3)? C(sp) bond formation. The mild, convenient, efficient, and highly selective C(sp3)? H alkynylation reaction shows excellent regioselectivity and good functional‐group compatibility. A scale‐up to gram quantities is possible with sunlight used as a clean and sustainable energy source.  相似文献   

12.
The continued use of fossil fuels as primary sources of energy in industry and other applications stands the test of time, due to their availability and relatively lower cost than alternative sources of energy. In view of this perspective, obtaining an advanced bulk carbon dioxide (CO2) capture medium becomes an urgent necessity so as to mitigate their effect, especially in global warming, as the use of fossil fuels produces a high rate of CO2. In this work, the mechanism and kinetics of CO2 capture using aqueous piperazine (PZ) as an activator to 2‐amino‐2‐methyl‐1,3‐propanediol (AMPD) were investigated. The termolecular mechanism was used to model the kinetics of the system. Reaction kinetics of the single pure amines was first obtained. The reaction rate constant, the k value of AMPD, was 77.2 m3/kmol·s, with a reaction order, n, of 1.25 at 298 K. while that of PZ was equal to 11,059 m3/kmol·s and n as 1.49 at 298 K. Blending of 0.05 kmol/m3 of PZ with 0.5 kmol/m3 of AMPD gave a rate constant, k, value of 23,319 m3/kmol·s and n equal to 1.23 at 298 K. The result obtained for the blended system is more than twice the value of the summation of the corresponding pure amines; in addition, it is comparably higher than the rate constant of monoethanolamine (MEA) in use as a commercial solvent for CO2 capture. Therefore, an aqueous blend of PZ with AMPD deserves more comprehensive study as a solvent for commercial CO2 capture. AMPD like other sterically hindered amines absorbs CO2 in an equimolar ratio that is significantly higher than that of MEA. PZ serves as a promoter in the amine mixture and is required in a very small proportion.  相似文献   

13.
This paper aims at reporting on the synthesis of a heterograft copolymer by combining the “grafting onto” process based on atom transfer radical addition (ATRA) and the “grafting from” process by atom transfer radical polymerization (ATRP). The statistical copolymerization of ε‐caprolactone (εCL) and α‐chloro‐ε‐caprolactone (αClεCL) was initiated by 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP), followed by ATRA of parts of the chlorinated units of poly(αClεCL‐co‐εCL) on the terminal double bond of α‐MeO,ω‐CH2?CH? CH2? CO2‐poly(ethylene oxide) (PEO). The amphiphilic poly(εCL‐g‐EO) graft copolymer collected at this stage forms micelles as supported by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The unreacted pendant chloro groups of poly(εCL‐g‐EO) were used to initiate the ATRP of styrene with formation of copolymer with two populations of randomly distributed grafts, that is PEO and polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6015–6024, 2006  相似文献   

14.
Atmospheric carbon dioxide (CO2) has increased from 278 to 408 parts per million (ppm) over the industrial period and has critically impacted climate change. In response to this crisis, carbon capture, utilization, and storage/sequestration technologies have been studied. So far, however, the economic feasibility of the existing conversion technologies is still inadequate owing to sluggish CO2 conversion. Herein, we report an aqueous zinc– and aluminum–CO2 system that utilizes acidity from spontaneous dissolution of CO2 in aqueous solution to generate electrical energy and hydrogen (H2). The system has a positively shifted onset potential of hydrogen evolution reaction (HER) by 0.4 V compared to a typical HER under alkaline conditions and facile HER kinetics with low Tafel slope of 34 mV dec?1. The Al–CO2 system has a maximum power density of 125 mW cm?2 which is the highest value among CO2 utilization electrochemical system.  相似文献   

15.
A series of α‐hydroxy‐benzylphosph‐ onates and ‐benzylphosphine oxides was synthesized by the Na2CO3‐catalyzed microwave‐assisted addition of dialkyl phosphites and dipenylphosphine oxide to P‐substituted benzaldehydes. The solventless reaction provided the products in short reaction times and in 71–88% yield. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 22:15–17, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20649  相似文献   

16.
The crystal structures of the first stable α‐diol from the α‐halogenopyruv­amide series, 3‐chloro‐2,2‐di­hydroxy‐3‐phenyl­propan­amide, C9H10­ClNO3, and three products [3‐(4‐chloro­phenyl)‐2‐cyano‐2,3‐epoxy­propan­amide, C10H7­ClN2O2, 3‐bromo‐2‐cyano‐2‐hydroxy‐3‐p‐tolyl­propan­amide, C11H11Br­N2O2, 3‐bromo‐2‐oxo‐3‐p‐tolyl­propan­amide, C10H10­BrNO2] obtained during the systematic synthesis of α‐halogenopyruv­amides are reported. The crystal structures are dominated by hydrogen bonds involving an amide group. The stability of the geminal diol could be ascribed to hydrogen bonds which involve both hydroxyl groups.  相似文献   

17.
α‐Linolenic acid is an essential omega‐3 fatty acid needed for human health. However, the isolation of high‐purity α‐linolenic acid from plant resources is challenging. The preparative separation methods of α‐linolenic acid by both conventional and pH‐zone refining counter current chromatography were firstly established in this work. The successful separation of α‐linolenic acid by conventional counter current chromatography was achieved by the optimized solvent system n‐heptane/methanol/ water/acetic acid (10:9:1:0.04, v/v), producing 466 mg of 98.98% α‐linolenic acid from 900 mg free fatty acid sample prepared from perilla seed oil with linoleic acid and oleic acid as by‐products. The scaled‐up separation in 45× is efficient without loss of resolution and extension of separation time. The separation of α‐linolenic acid by pH‐zone refining counter current chromatography was also satisfactory by the solvent system n‐hexane/methanol/water (10:5:5, v/v) and the optimized concentration of trifluoroacetic acid 30 mM and NH4OH 10 mM. The separation can be scaled up in 180× producing 9676.7 mg of 92.79% α‐linolenic acid from 18 000 mg free fatty acid sample. pH‐zone refining counter current chromatography exhibits a great advantage over conventional counter current chromatography with 20× sample loading capacity on the same column.  相似文献   

18.
The asymmetric unit of the title compound, [Pb2(C8H4O4)2(C18H11N5)2]n, contains two PbII atoms, two benzene‐1,4‐dicarboxylate (1,4‐bdc) dianions and two 6‐(4‐pyridyl)‐5H‐imidazolo[4,5‐f][1,10]phenanthroline (L) ligands. Each PbII atom is eight‐coordinated by three N atoms from two different L ligands and five carboxylate O atoms from three different 1,4‐bdc dianions. The two 1,4‐bdc dianions (1,4‐bdc1 and 1,4‐bdc2) show different coordination modes. Each 1,4‐bdc1 coordinates to two PbII atoms in a chelating bis‐bidentate mode. Each carboxylate group of the 1,4‐bdc2 anion connects two PbII atoms in a chelating–bridging tridentate mode to form a dinuclear unit. Neighbouring dinuclear units are connected together by the aromatic backbone of the 1,4‐bdc dianions and the L ligands into a three‐dimensional six‐connected α‐polonium framework. The most striking feature is that two identical three‐dimensional single α‐polonium nets are interlocked with each other, thus leading directly to the formation of a twofold interpenetrated three‐dimensional α‐polonium architecture. The framework is held together in part by strong N—H...O hydrogen bonds between the imidazole NH groups of the L ligands and the carboxylate O atoms of 1,4‐bdc dianions within different α‐polonium nets.  相似文献   

19.
Carbonyl–ene reactions of 2,3‐diketoesters catalyzed by [Cu{(S,S)‐tBu‐box}](SbF6)2 [box=bis(oxazoline)] generate chiral α‐functionalized α‐hydroxy‐β‐ketoesters in up to 94 % yield and 97 % ee. The 2,3‐diketoesters are conveniently accessed from the corresponding α‐diazo‐β‐ketoester, and a catalyst loading as low as 1.0 mol % can be achieved.  相似文献   

20.
Reversible catalysis is a hallmark of energy‐efficient chemical transformations, but can only be achieved if the changes in free energy of intermediate steps are minimized and the catalytic cycle is devoid of high transition‐state barriers. Using these criteria, we demonstrate reversible CO2/HCO2? conversion catalyzed by [Pt(depe)2]2+ (depe=1,2‐bis(diethylphosphino)ethane). Direct measurement of the free energies associated with each catalytic step correctly predicts a slight bias towards CO2 reduction. We demonstrate how the experimentally measured free energy of each step directly contributes to the <50 mV overpotential. We also find that for CO2 reduction, H2 evolution is negligible and the Faradaic efficiency for HCO2? production is nearly quantitative. A free‐energy analysis reveals H2 evolution is endergonic, providing a thermodynamic basis for highly selective CO2 reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号