首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sluggish oxygen evolution kinetics are one of the key limitations of bismuth vanadate (BiVO4) photoanodes for efficient photoelectrochemical (PEC) water splitting. To address this issue, we report a vanadium oxide (VOx) with enriched oxygen vacancies conformally grown on BiVO4 photoanodes by a simple photo-assisted electrodeposition process. The optimized BiVO4/VOx photoanode exhibits a photocurrent density of 6.29 mA cm−2 at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination, which is ca. 385 % as high as that of its pristine counterpart. A high charge-transfer efficiency of 96 % is achieved and stable PEC water splitting is realized, with a photocurrent retention rate of 88.3 % upon 40 h of testing. The excellent PEC performance is attributed to the presence of oxygen vacancies in VOx that forms undercoordinated sites, which strengthen the adsorption of water molecules onto the active sites and promote charge transfer during the oxygen evolution reaction. This work demonstrates the potential of vanadium-based catalysts for PEC water oxidation.  相似文献   

2.
《中国化学快报》2023,34(1):107125
Fabricating an efficient charge transfer pathway at the compact interface between two kinds of semiconductors is an important strategy for designing hydrogen production heterojunction photocatalysts. In this work, we prepared a compact, stable and oxygen vacancy-rich photocatalyst (SnO2/TiO2 heterostructure) via a simple and reasonable in-situ synthesis method. Briefly, SnCl2–2H2O is hydrolyzed on the TiO2 precursor. After the pyrolysis process, SnO2 nanoparticles (5 nm) were dispersed on the surface of ultrathin TiO2 nanosheets uniformly. Herein, the heterojunction system can offer abundant oxygen vacancies, which can act as active sites for catalytic reactions. Meanwhile, the interfacial contact of SnO2/TiO2 grading semiconductor oxide is uniform and tight, which can promote the separation and migration of photogenerated carriers. As shown in the experimental results, the hydrogen production rate of SnO2/TiO2 is 16.7 mmol h?1 g?1 (4.4 times higher than that of TiO2), which is owing to its good dynamical properties. This work demonstrates an efficient strategy of tight combining SnO2/TiO2 with abundant oxygen vacancies to improve catalytic efficiency.  相似文献   

3.
Photoelectrochemical (PEC) water splitting is a promising method for the conversion of solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (α-Fe2O3) is one of the most attractive materials for a highly efficient charge carrier generation and collection due to its large specific surface area and the short minority carrier diffusion length. In the present work, the PEC water splitting performance of nanostructured α-Fe2O3 is investigated which was prepared by anodization followed by annealing in a low oxygen ambient (0.03 % O2 in Ar). It was found that low oxygen annealing can activate a significant PEC response of α-Fe2O3 even at a low temperature of 400 °C and provide an excellent PEC performance compared with classic air annealing. The photocurrent of the α-Fe2O3 annealed in the low oxygen at 1.5 V vs. RHE results as 0.5 mA cm−2, being 20 times higher than that of annealing in air. The obtained results show that the α-Fe2O3 annealed in low oxygen contains beneficial defects and promotes the transport of holes; it can be attributed to the improvement of conductivity due to the introduction of suitable oxygen vacancies in the α-Fe2O3. Additionally, we demonstrate the photocurrent of α-Fe2O3 annealed in low oxygen ambient can be further enhanced by Zn-Co LDH, which is a co-catalyst of oxygen evolution reaction. This indicates low oxygen annealing generates a promising method to obtain an excellent PEC water splitting performance from α-Fe2O3 photoanodes.  相似文献   

4.
Understanding the origin of formation and active sites of oxygen evolution reaction (OER) cocatalysts is highly required for solar photoelectrochemical (PEC) devices that generate hydrogen efficiently from water. Herein, we employed a simple pH-modulated method for in situ growth of FeNi oxyhydroxide ultrathin layers on BiVO4 photoanodes, resulting in one of the highest currently known PEC activities of 5.8 mA cm−2 (1.23 VRHE, AM 1.5 G) accompanied with an excellent stability. More importantly, both comparative experiments and density functional theory (DFT) studies clearly reveal that the selective formation of Bi−O−Fe interfacial bonds mainly contributes the enhanced OER activities, while the construction of V−O−Ni interfacial bonds effectively restrains the dissolution of V5+ ions and promotes the OER stability. Thereby, the synergy between iron and nickel of FeNi oxyhydroxides significantly improved the PEC water oxidation properties of BiVO4 photoanodes.  相似文献   

5.
Interface engineering has been applied as an effective strategy to boost the electrocatalytic performance because of the strong coupling and synergistic effects between individual components. Here, we engineered vertically aligned FeOOH/CoO nanoneedle array with a synergistic interface between FeOOH and CoO on Ni foam (NF) by a simple impregnation method. The synthesized FeOOH/CoO exhibits outstanding electrocatalytic activity and stability for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. For the overall water splitting, the bifunctional FeOOH/CoO nanoneedle catalyst requires only a cell voltage of 1.58 V to achieve a current density of 10 mA cm−2, which is much lower than that required for IrO2//Pt/C (1.68 V). The FeOOH/CoO catalyst has been successfully applied for solar cell-driven water electrolysis, revealing its great potential for commercial hydrogen production and solar energy storage.  相似文献   

6.
Electrochemical water splitting is a clean technology for H2 fuels, but greatly hindered by the slow kinetics of the oxygen evolution reaction (OER). Herein, a series of spinel‐structured nanosheets with oxygen deficiencies and ultrathin thicknesses were designed to increase the reactivity and the number of active sites of the catalysts, which were then taken as an excellent platform for promoting the water oxidation process. Theoretical investigations showed that the oxygen vacancies confined in the ultrathin nanosheet could lower the adsorption energy of H2O, leading to increased OER efficiency. As expected, the NiCo2O4 ultrathin nanosheets rich in oxygen vacancies exhibited a large current density of 285 mA cm?2 at 0.8 V and a small overpotential of 0.32 V, both of which are superior to the corresponding values of bulk samples or samples with few oxygen deficiencies and even higher than those of most reported non‐precious‐metal catalysts. This work should provide a new pathway for the design of advanced OER catalysts.  相似文献   

7.
Nanotubular Fe2O3 is a promising photoanode material, and producing morphologies that withstand high‐temperature calcination (HTC) is urgently needed to enhance the photoelectrochemical (PEC) performance. This work describes the design and fabrication of Fe2O3 nanotube arrays that survive HTC for the first time. By introducing a ZrO2 shell on hydrothermal FeOOH nanorods by atomic layer deposition, subsequent high‐temperature solid‐state reaction converts FeOOH‐ZrO2 nanorods to ZrO2‐induced Fe2O3 nanotubes (Zr‐Fe2O3 NTs). The structural evolution of the hematite nanotubes is systematically explored. As a result of the nanostructuring and shortened charge collection distance, the nanotube photoanode shows a greatly improved PEC water oxidation activity, exhibiting a photocurrent density of 1.5 mA cm−2 at 1.23 V (vs. reversible hydrogen electrode, RHE), which is the highest among hematite nanotube photoanodes without co‐catalysts. Furthermore, a Co‐Pi decorated Zr‐Fe2O3 NT photoanode reveals an enhanced onset potential of 0.65 V (vs. RHE) and a photocurrent of 1.87 mA cm−2 (at 1.23 V vs. RHE).  相似文献   

8.
《中国化学快报》2020,31(10):2641-2644
The high cost and low reserves of noble metals greatly hinder their practical applications in new energy production and conversion. The exploration of cost-effective alternative electrocatalysts with the ability to drive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely significant to promote overall water splitting. Herein, ultrathin CoSe2/CNTs nanocomposites have been synthesized by a facile two-step method, where the ultrathin Co-MOF (metal organic-framework) decorated with cable-like carbon nanotubes (CNTs) (Co-MOF/CNTs) was initially fabricated, and followed a low-temperature selenization process. The ultrathin CoSe2 nanosheets as well as the superior conductivity of CNTs synergistically resulted in abundant active sites and enhanced conductivity to boost the electrocatalytic activity. The as-prepared CoSe2/CNTs electrocatalysts exhibited an overpotential of 190 mV and 300 mV vs. reversible hydrogen electrode (RHE) at a current density of 10 mA/cm2 for the HER and OER in alkaline solution, respectively, and demonstrated superior durability. Furthermore, the as-prepared bifunctional CoSe2/CNTs electrocatalysts can act as cathode and anode in an electrolyzer, showing a cell voltage of 1.75 V at 10 mA/cm2 for overall water splitting.  相似文献   

9.
Combining the self-sacrifice of a highly crystalline substance to design a multistep chain reaction towards ultrathin active-layer construction for high-performance water splitting with atmospheric-temperature conditions and an environmentally benign aqueous environment is extremely intriguing and full of challenges. Here, taking cobalt carbonate hydroxides (CCHs) as the initial crystalline material, we choose the Lewis acid metal salt of Fe(NO3)3 to induce an aqueous-phase chain reaction generating free CO32− ions with subsequent instant FeCO3 hydrolysis. The resultant ultrathin (∼5 nm) amorphous Fe-based hydroxide layer on CCH results in considerable activity in catalyzing the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), yielding 10/50 mA ⋅ cm−2 at overpotentials of 230/266.5 mV for OER and 72.5/197.5 mV for HER. The catalysts can operate constantly in 1.0 M KOH over 48 and 45 h for the OER and HER, respectively. For bifunctional catalysis for alkaline electrolyzer assembly, a cell voltage as low as 1.53 V was necessary to yield 10 mA cm−2 (1.7 V at 50 mA cm−2). This work rationally builds high-efficiency electrochemical bifunctional water-splitting catalysts and offers a trial in establishing a controllable nanolevel ultrathin lattice disorder layer through an atmospheric-temperature chemical route.  相似文献   

10.
It is still an enormous challenge to develop non-precious electrocatalysts through low-cost and efficient methods. To fulfill highly active site exposure and optimized intrinsic activity, the 2-dimensional NiS2/CeO2 with unique heterostructure and abundant sulfur and oxygen vacancies (v-NiS2/CeO2 HS) was prepared by solvothermal reaction and annealing. The density functional theory calculations illustrate that the materials with both heterostructure and vacancies simultaneously have a positive effect on promoting the kinetics of oxygen evolution reaction and hydrogen evolution reaction and optimizing the adsorption energy of hydrogen. As a result, v-NiS2/CeO2 HSs deliver the current density of 10 mA/cm2 at the low overpotential of 271 mV for oxygen evolution reaction and the overpotential required by v-NiS2/CeO2 HSs for hydrogen evolution reaction is 123 mV (at 10 mA/cm2). The v-NiS2/CeO2 HSs demand a lower cell voltage with 1.64 V (at 10 mA/cm2) toward overall water splitting. These results provide a theoretical and practical direction for the development of low-cost, earth-abundant electrocatalysts.  相似文献   

11.
Developing bifunctional catalysts for both hydrogen and oxygen evolution reactions is a promising approach to the practical implementation of electrocatalytic water splitting. However, most of the reported bifunctional catalysts are only applicable to alkaline electrolyzer, although a few are effective in acidic or neutral media that appeals more to industrial applications. Here, a lithium‐intercalated iridium diselenide (Li‐IrSe2) is developed that outperformed other reported catalysts toward overall water splitting in both acidic and neutral environments. Li intercalation activated the inert pristine IrSe2 via bringing high porosities and abundant Se vacancies for efficient hydrogen and oxygen evolution reactions. When Li‐IrSe2 was assembled into two‐electrode electrolyzers for overall water splitting, the cell voltages at 10 mA cm?2 were 1.44 and 1.50 V under pH 0 and 7, respectively, being record‐low values in both conditions.  相似文献   

12.
Metal oxides are an important family of semiconductors for effective photoelectrodes in solar‐to‐chemical energy conversion. Defect engineering, such as modification of oxygen vacancy density, has been extensively applied in tailoring the optoelectric properties of photoelectrodes. Very limited attention has been paid to the influence of metal vacancies. Herein, we study metal vacancies in a typical CuO photocathode for photoelectrochemical (PEC) water splitting. The Cu vacancies can improve the charge carrier concentration, and facilitate the charge separation and transfer in the CuO photocathode. By changing the O2 partial pressure, the density of Cu vacancies can be tuned, which leads to improved PEC performance. The CuO photocathode prepared in pure O2 exhibits a 100 % photocurrent increase compared to that prepared in air. The promotion effect of Cu vacancies on the PEC is also observed in other Cu based photocathodes, showing the generic role of metal vacancies in efficient photocathodes.  相似文献   

13.
以氯化钨为前驱体,通过溶剂热法制备了WO3和W18O49并将其应用在染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)和电解水析氢反应(hydrogen evolution reaction,HER)中。通过X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)对WO3和W18O49的结构和形貌进行表征。结果表明:WO3和W18O49均为单斜相,其形貌表现为定向排列的纳米棒组成的团簇。X射线光电子能谱(XPS)和电子顺磁共振(EPR)表明W18O49中含有丰富的氧空位。基于氧空位优异的电化学特性,W18O49对电极组装的DSSC获得了7.41%的光电能量转换效率(power conversion efficiency,PCE),高于WO  相似文献   

14.
Photoelectrochemical (PEC) water splitting is a promising strategy to convert solar energy into hydrogen fuel. However, the poor bulk charge‐separation ability and slow surface oxygen evolution reaction (OER) dynamics of photoelectrodes impede the performance. We construct In‐ and Zn/In‐doped SnS2 nanosheet arrays through a hydrothermal method. The doping induces the simultaneous formation of an amorphous layer, S vacancies, and a gradient energy band. This leads to elevated carrier concentrations, an increased number of surface‐reaction sites, accelerated surface‐OER kinetics, and an enhanced bulk‐carrier separation efficiency with a decreased recombination rate. This efficient doping strategy allows to manipulate the morphology, crystallinity, and band structure of photoelectrodes for an improved PEC performance.  相似文献   

15.
Photoelectrochemical (PEC) water splitting is a promising strategy to convert solar energy into hydrogen fuel. However, the poor bulk charge‐separation ability and slow surface oxygen evolution reaction (OER) dynamics of photoelectrodes impede the performance. We construct In‐ and Zn/In‐doped SnS2 nanosheet arrays through a hydrothermal method. The doping induces the simultaneous formation of an amorphous layer, S vacancies, and a gradient energy band. This leads to elevated carrier concentrations, an increased number of surface‐reaction sites, accelerated surface‐OER kinetics, and an enhanced bulk‐carrier separation efficiency with a decreased recombination rate. This efficient doping strategy allows to manipulate the morphology, crystallinity, and band structure of photoelectrodes for an improved PEC performance.  相似文献   

16.
The BiVO4 photoelectrochemical (PEC) electrode in tandem with a photovoltaic (PV) cell has shown great potential to become a compact and cost‐efficient device for solar hydrogen generation. However, the PEC part is still facing problems such as the poor charge transport efficiency owing to the drag of oxygen vacancy bound polarons. In the present work, to effectively suppress oxygen vacancy formation, a new route has been developed to synthesize BiVO4 photoanodes by using a highly oxidative two‐dimensional (2D) precursor, bismuth oxyiodate (BiOIO3), as an internal oxidant. With the reduced defects, namely the oxygen vacancies, the bound polarons were released, enabling a fast charge transport inside BiVO4 and doubling the performance in tandem devices based on the oxygen vacancy eliminated BiVO4. This work is a new avenue for elaborately designing the precursor and breaking the limitation of charge transport for highly efficient PEC‐PV solar fuel devices.  相似文献   

17.
Alleviating charge recombination at the electrode/electrolyte interface by introducing an overlayer is considered an efficient approach to improve photoelectrochemical (PEC) water oxidation. A WO3 overlayer with dual oxygen and tungsten vacancies was prepared by using a solution‐based reducing agent, LEDA (lithium dissolved in ethylenediamine), which improved the PEC performance of the mesoporous WO3 photoanode dramatically. In comparison to the pristine samples, the interconnected WO3 nanoparticles surrounded by a 2–2.5 nm thick overlayer exhibited a photocurrent density approximately 2.4 times higher and a marked cathodic shift of the onset potential, which is mainly attributed to the facilitative effect on interface charge transfer and the improved conductivity by enhanced charge carrier density. This simple and effective strategy may provide a new path to improve the PEC performance of other photoanodes.  相似文献   

18.
A highly active FeSe2 electrocatalyst for durable overall water splitting was prepared from a molecular 2Fe‐2Se precursor. The as‐synthesized FeSe2 was electrophoretically deposited on nickel foam and applied to the oxygen and hydrogen evolution reactions (OER and HER, respectively) in alkaline media. When used as an oxygen‐evolution electrode, a low 245 mV overpotential was achieved at a current density of 10 mA cm−2, representing outstanding catalytic activity and stability because of Fe(OH)2/FeOOH active sites formed at the surface of FeSe2. Remarkably, the system is also favorable for the HER. Moreover, an overall water‐splitting setup was fabricated using a two‐electrode cell, which displayed a low cell voltage and high stability. In summary, the first iron selenide material is reported that can be used as a bifunctional electrocatalyst for the OER and HER, as well as overall water splitting.  相似文献   

19.
刘志锋  鲁雪 《催化学报》2018,39(9):1527-1533
光电化学分解水制氢可以一并解决环境问题和能源危机,因而成为研究热点.由于TiO_2 禁带宽度较大,不能有效吸收太阳光中的可见光,使光电化学分解水制氢的应用受限.g-C_3N_4的禁带宽度约为2.7 e V,能有效吸收可见光,但g-C_3N_4薄膜制备研究较少.我们通过热聚缩合法直接在FTO导电玻璃上制备出g-C_3N_4薄膜,发现其光电化学分解水制氢稳定性不高,选择易制备的TiO_2 作为保护层可以提高g-C_3N_4的耐用性.此外,为提高g-C_3N_4光生电子空穴对的分离能力,依靠Co-Pi对光生空穴的捕获作用而将其覆盖在最外层.因此本文首次制备一种新型的g-C_3N_4/TiO_2 /Co-Pi光阳极用于光电化学分解水制氢,其中g-C_3N_4用作光吸收层,TiO_2 用作保护层,Co-Pi用作空穴捕获层.并在此基础上,通过扫描电子显微镜(SEM),X射线衍射(XRD),紫外可见光谱(UV-Vis)等手段研究了g-C_3N_4/TiO_2 /Co-Pi光阳极的形貌特征和光电化学性能.SEM、EDS和XRD结果表明,g-C_3N_4/TiO_2 /Co-Pi光阳极被成功制备在了FTO导电玻璃上,厚度约为3μm.UV-Vis测试表明,g-C_3N_4的光吸收边约为470 nm,可以有效地吸收可见光,并且g-C_3N_4的框架结构使光多次反射折射增加了光的捕获能力,由此可见,g-C_3N_4能够发挥很好的光吸收层作用.通过对g-C_3N_4光阳极,g-C_3N_4/TiO_2 光阳极和g-C_3N_4/TiO_2 /Co-Pi光阳极的电流电压测试发现,g-C_3N_4/TiO_2 光阳极的光电流密度小于g-C_3N_4光阳极,而g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密在可逆氢电极1.1 V下达到了0.346 mA?cm–2,约为单独g-C_3N_4光阳极的3.6倍.这说明Co-Pi是提升g-C_3N_4光电化学性能的主要因素.电化学阻抗测试结果发现,g-C_3N_4/TiO_2 /Co-Pi光阳极的界面电荷转移电阻小于g-C_3N_4光阳极的,这表明g-C_3N_4/TiO_2 /Co-Pi光阳极界面处载流子转移较快,同时也能促进内部光生电子空穴对的分离,整体性能的提高应该主要归因于Co-Pi对光生空穴的捕获作用.恒电压时间测试展示出g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密度在2 h测试过程中没有明显下降,表明g-C_3N_4/TiO_2 /Co-Pi光阳极是相当稳定的,具有良好的耐用性,归因于TiO_2 和Co-Pi的共同保护作用,主要归因于TiO_2 层对FTO导电玻璃上的g-C_3N_4薄膜保护,从电化学沉积Co-Pi到所有测试结束.总体而言,g-C_3N_4/TiO_2 /Co-Pi光阳极加强的光电化学性能归因于以下几个因素:(1)g-C_3N_4优异的光吸收能力;(2)TiO_2 稳定的保护提升了g-C_3N_4薄膜的耐用性;(3)Co–Pi对光生空穴的捕获有效促进了光生电子空穴对的分离.  相似文献   

20.
Halide perovskites show incredible photovoltaic power conversion efficiency coupled with several hundreds of hours of device stability. However, their stability is poor in aqueous electrolyte media. Reported here is a vacancy ordered halide perovskite, Cs2PtI6, which shows extraordinary stability under ambient conditions (1 year), in aqueous media of extreme acidic (pH 1), basic (pH 13), and under electrochemical reduction conditions. It was employed as an electrocatalyst and photoanode for hydrogen production and water oxidation, respectively. The catalyst remains intact for at least 100 cycles of electrochemical cycling and six hours of hydrogen production at pH 1. Cs2PtI6 was employed as a photoanode for PEC water oxidation, and the material displayed a photocurrent of 0.8 mA cm−2 at 1.23 V (vs. RHE) under simulated AM1.5G sunlight. Using constant voltage measurement, Cs2PtI6 exhibited over 12 hours of PEC stability without loss of performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号