首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first rhodium(I)‐catalyzed enantioselective intermolecular C –H activation of various saturated aza‐heterocycles including tetrahydroquinolines, piperidines, piperazines, azetidines, pyrrolidines, and azepanes is presented. The combination of a rhodium(I) precatalyst and a chiral monodentate phosphonite ligand is shown to be a powerful catalytic system to access a variety of important enantio‐enriched heterocycles from simple starting materials. Notably, the C –H activation of tetrahydroquinolines is especially challenging due to the adjacent C −H bond. This redox‐neutral methodology provides a new synthetic route to α‐N‐arylated heterocycles with high chemoselectivity and enantioselectivity up to 97 % ee.  相似文献   

2.
While chemoselectivities in Pd0‐catalyzed coupling reactions are frequently non‐intuitive and a result of a complex interplay of ligand/catalyst, substrate, and reaction conditions, we herein report a general method based on PdI that allows for an a priori predictable chemoselective C −C coupling at C−Br in preference to C−OTf and C−Cl bonds, regardless of the electronic or steric bias of the substrate. The C−C bond formations are extremely rapid (<5 min at RT) and are catalyzed by an air‐ and moisture‐stable PdI dimer under open‐flask conditions.  相似文献   

3.
Protein dynamics occurring on a wide range of timescales play a crucial role in governing protein function. Particularly, motions between the globular rotational correlation time ( ) and 40 μs (supra‐ window), strongly influence molecular recognition. This supra‐ window was previously hidden, owing to a lack of experimental methods. Recently, we have developed a high‐power relaxation dispersion (RD) experiment for measuring kinetics as fast as 4 μs. For the first time, this method, performed under super‐cooled conditions, enabled us to detect a global motion in the first β‐turn of the third IgG‐binding domain of protein G (GB3), which was extrapolated to 371±115 ns at 310 K. Furthermore, the same residues show the plasticity in the model‐free residual dipolar coupling (RDC) order parameters and in an ensemble encoding the supra‐ dynamics. This β‐turn is involved in antibody binding, exhibiting the potential link of the observed supra‐ motion with molecular recognition.  相似文献   

4.
Gold nanoparticle catalysts are important in many industrial production processes. Nevertheless, for traditional C ?C cross‐coupling reactions they have been rarely used and Pd catalysts usually give a superior performance. Herein we report that in situ formed gold metal nanoparticles are highly active catalysts for the cross coupling of allylstannanes and activated alkylbromides to form C ?C bonds. Turnover numbers up to 29 000 could be achieved in the presence of active carbon as solid support, which allowed for convenient catalyst recovery and reuse. The present study is a rare case where a gold metal catalyst is superior to Pd catalysts in a cross‐coupling reaction of an organic halide and an organometallic reagent.  相似文献   

5.
During the past half century, the number and accuracy of experimental techniques that can deliver values of observables for biomolecular systems have been steadily increasing. The conversion of a measured value Qexp of an observable quantity Q into structural information is, however, a task beset with theoretical and practical problems: 1) insufficient or inaccurate values of Qexp, 2) inaccuracies in the function used to relate the quantity Q to structure , 3) how to account for the averaging inherent in the measurement of Qexp, 4) how to handle the possible multiple‐valuedness of the inverse of the function , to mention a few. These apply to a variety of observable quantities Q and measurement techniques such as X‐ray and neutron diffraction, small‐angle and wide‐angle X‐ray scattering, free‐electron laser imaging, cryo‐electron microscopy, nuclear magnetic resonance, electron paramagnetic resonance, infrared and Raman spectroscopy, circular dichroism, Förster resonance energy transfer, atomic force microscopy and ion‐mobility mass spectrometry. The process of deriving structural information from measured data is reviewed with an eye to non‐experts and newcomers in the field using examples from the literature of the effect of the various choices and approximations involved in the process. A list of choices to be avoided is provided.  相似文献   

6.
We herein report the tunable self-assembly of simple block copolymers, namely polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers, into porous cubosomes with inverse or mesophases of controlled unit cell parameters as well as hexasomes with an inverse hexagonal (p6mm) structure, which have been rarely observed in polymer self-assembly. A new morphological phase diagram was constructed for the solution self-assembly of PS-b-PEO based on the volume fraction of the PS block against the initial copolymer concentration. The formation mechanisms of the cubosomes and hexasomes have also been revealed. This study not only affords a simple system for the controllable preparation and fundamental studies of ordered bicontinuous structures, but also opens up a new avenue towards porous architectures with highly ordered pores.  相似文献   

7.
A Ni(OAc)2‐catalyzed C?H coupling of 8‐aminoquinoline‐derived benzamides with epoxides has been developed. The reaction proceeds with concomitant removal of the 8‐aminoquinoline auxiliary to form the corresponding 3,4‐dihydroisocoumarins directly. Additionally, the nickel catalysis is stereospecific, and the cis‐ and trans‐epoxides are converted into the corresponding cis‐ and trans‐dihydroisocoumarins with retention of configuration, which is complementary to previously reported palladium catalysis. Moreover, while still preliminary, the C ?H functionalization is also achieved in the presence of modified NiCl2 catalysts.  相似文献   

8.
Skepinone‐L was recently reported to be a p38α MAP kinase inhibitor with high potency and excellent selectivity in vitro and in vivo. However, this class of compounds still act as fully ATP‐competitive Type I binders which, furthermore, suffer from short residence times at the enzyme. We herein describe a further development with the first Type I binders for p38α MAP kinase. Type I inhibitors interfere with the R‐spine, inducing a glycine flip and occupying both hydrophobic regions I and II. This design approach leads to prolonged target residence time, binding to both the active and inactive states of the kinase, excellent selectivity, excellent potency on the enzyme level, and low nanomolar activity in a human whole blood assay. This promising binding mode is proven by X‐ray crystallography.  相似文献   

9.
The development of new hydrogen‐atom transfer (HAT) strategies within the framework of photoredox catalysis is highly appealing for its power to activate a desired C−H bond in the substrate leading to its selective functionalization. Reported here is the first photoredox‐mediated hydrogen‐atom transfer method for the efficient synthesis of ynones, ynamides, and ynoates with high regio‐ and chemoselectivity by direct functionalization of C (O)−H bonds. The broad synthetic application of this method has been demonstrated by the selective functionalization of C(O)−H bonds within complex molecular scaffolds.  相似文献   

10.
Using low‐energy electron microscopy and local photoelectron spectroscopy, water formation from adsorbed O and H2 on a Ru(0001) surface covered with a vitreous SiO2 bilayer (BL) was investigated and compared to the same reaction on bare Ru(0001). In both cases the reaction is characterized by moving reaction fronts. The reason for this might be related to the requirement of site release by O adatoms for further H2‐dissociative adsorption. Apparent activation energies ( ) are found for the front motion of 0.59 eV without cover and 0.27 eV under cover. We suggest that the smaller activation energy but higher reaction temperature for the reaction on the SiO2 BL covered Ru(0001) surface is due to a change of the rate‐determining step. Other possible effects of the cover are discussed. Our results give the first values for in confined space.  相似文献   

11.
The synthesis of the first 4d transition metal oxide–hydride, LaSr3NiRuO4H4, is prepared via topochemical anion exchange. Neutron diffraction data show that the hydride ions occupy the equatorial anion sites in the host lattice and as a result the Ru and Ni cations are located in a plane containing only hydride ligands, a unique structural feature with obvious parallels to the CuO2 sheets present in the superconducting cuprates. DFT calculations confirm the presence of S= Ni+ and S=0, Ru2+ centers, but neutron diffraction and μSR data show no evidence for long‐range magnetic order between the Ni centers down to 1.8 K. The observed weak inter‐cation magnetic coupling can be attributed to poor overlap between Ni 3d and H 1s in the super‐exchange pathways.  相似文献   

12.
A full dimensional time‐dependent quantum wavepacket approach is used to study the photodissociation dynamics of nitrous oxide for the X → 2 bound–bound transition based on new highly accurate potential energy and transition dipole moment surfaces. The computed 2 absorption spectra at room temperature are characterized by sharp vibrational structures that contribute slightly to the diffuse vibrational structures around the maximum peak at 180 nm of the first ultraviolet absorption band (from the contribution of 2 , 1 , and 2 states) of N2O. Transitions from different initial rovibrational states reveal that the sharp structures arise mainly from N2? O bending vibrations, whereas, at higher temperatures, the N2? O and N? NO stretching vibrations are responsible for enhancing the intensity of the structures. At absorption wavelengths 166 nm and 179 nm, vibrational quantum state distributions of N2 product fragments decrease monotonically with increasing vibrational quantum number v = 0, 1, 2. At 166 nm, rotational quantum state distributions of N2 at fixed v = 0 and v = 1 display multimodal profiles with maximum peaks at j = 77 and j = 75, respectively, whereas, the distributions at the 179 nm absorption wavelength display bimodal profiles with maximum peaks at j = 73 and j = 71, respectively. Accordingly, the presence of rotationally hot N2 from previous experimental and theoretical works in the first band strongly implies a significant influence of the 2 state in determining the final dissociation pathway of N2 + O. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
The electronic structure of several many‐electron atoms, confined within a penetrable spherical box, was studied using the Hartree–Fock (HF) method, coupling the Roothaan's approach with a new basis set to solve the corresponding one‐electron equations. The resulting HF wave‐function was employed to evaluate the Shannon entropy, , in configuration space. Confinements imposed by impenetrable walls induce decrements on when the confinement radius, Rc, is reduced and the electron‐density is localized. For confinements commanded by penetrable walls, exhibits an entirely different behavior, because when an atom starts to be confined, delivers values less than those observed for the free system, in the same way that the results presented by impenetrable walls. However, from a confinement radius, shows increments, and precisely in these regions, the spatial restrictions spread to the electron density. Thus, from results presented in this work, the Shannon entropy can be used as a tool to measure the electron density delocalization for many‐electron atoms, as the hydrogen atom confined in similar conditions.  相似文献   

14.
Although examples of multiple bonds between actinide elements and main-group elements are quite common, studies of the multiple bonds between actinide elements and transition metals are extremely rare owing to difficulties associated with their synthesis. Here we report the first example of molecular uranium complexes featuring a cis-[M U M] core (M=Rh, Ir), which exhibits an unprecedented arrangement of two M U double dative bond linkages to a single U center. These complexes were prepared by the reactions of chlorine-bridged heterometallic complexes [{U{N(CH3)(CH2CH2NPiPr2)2}(Cl)2[(μ-Cl)M(COD)]2}] (M=Rh, Ir) with MeMgBr or MeLi, a new method for the construction of species with U−M multiple bonds. Theoretical calculations including dispersion confirmed the presence of two U M double dative bonds in these complexes. This study not only enriches the U M multiple bond chemistry, but also provides a new opportunity to explore the bonding of actinide elements.  相似文献   

15.
Hyperbranched polymer formation during step polymerization of AB2 type monomer with equal reactivity of two B's is investigated theoretically, focusing the attention to the degree of branching (DB) and the mean square radius of gyration for the unperturbed chains, . It is found that the DB‐value at large degree of polymerization (P) limit, = 0.5 is unchanged during the whole course of polymerization. The average value of having the same P is invariant throughout the polymerization. The universal curve between and P agrees perfectly with that for the self‐condensing vinyl polymerization (SCVP), another method to synthesize hyperbranched polymers, when the reactivity ratio for SCVP, rSCVP, is 2.589 that gives = 0.5. The power law, is found for large values of P.

  相似文献   


16.
This study reports the spin–orbit effects on the aromaticity of the , , , , , and anionic clusters via the magnetically induced current‐density method. All‐electron density functional theory (DFT) calculations were carried out using the four‐component Dirac‐Coulomb (DC) hamiltonian, including scalar and spin–orbit relativistic effects. The magnetic index of aromaticity was calculated by numerical integration over the current flow between two atoms in the pentagonal ring. These values were compared to the spin‐free values (spin–orbit coupling switched off), in order to assess the spin–orbit effect on aromaticity. It was found that in the heavy anions, and , there is a significant influence of the spin–orbit coupling. © 2018 Wiley Periodicals, Inc.  相似文献   

17.
The geometric and electronic structures of a series of silicon fluorides (n = 4 ? 6) were computationally studied with the aid of density functional theory (DFT) method with B3LYP and M06‐2X functionals and coupled cluster (CCSD and CCSD(T)) methods with 6‐311++G(d,p) basis set. The nature of the Si‐F bonds in these compounds was analyzed in the framework of the natural bond orbital theory and natural resonance theory. Energy characteristics (heats of reactions and energy barriers) of the dissociation reactions → SiF4 + F and → + F were calculated using the DFT and CCSD methods. The potential energy surface of elimination of a fluoride anion from has a specific topology with valley‐ridge inflection points corresponding to bifurcations of the minimal energy reaction path. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Algorithms to build the basis and matrix representation to obtain the Kramers configuration space functions (KCSFs) via diagonalization will be formally generalized to an arbitrary number of unpaired (open shell) fermions. Effective build up of the matrix representation will be outlined (including threading and graphical processing unit parallelism) to subsequently obtain the KCSFs via calling external/numerical library routines for diagonalization. The effective build up of the matrix representation relays on a binary tree search algorithm to allow evaluation the action on a given basis vector. The binary tree search avoids the treatment of zero matrix elements which leads to an exponential acceleration. The implementation ( basis creation, matrix representation, and matrix diagonalization) will be done in an all in core and all at once manner, hence the available core memory sets the physical limits in practical applications. Memory limitations, sparsity of the matrix, general case of n fermions in m spinors, and the application of KCSFs will be put into further perspective.  相似文献   

19.
In order to study the electronic structure and structural stability of borane and carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters, especially the stability difference between the borane and carborane C2B3H5. The frontier orbital energy levels of the borane and carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters are calculated at CCSD(T)/aug‐cc‐pVXZ//B3LYP/def2‐TZVPP level. The results are further analyzed by qualitative frontier orbital method based on the cap–ring interaction. The results reveal that: (1) the larger Egap(HOMO‐LUMO energy gap) of carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters than borane (5 ≤ n ≤ 7) clusters originates from the more effective cap–ring orbital overlap of carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters than that of borane (5 ≤ n ≤ 7) clusters; (2) the smallest Egap of the borane results from the highest energy level of the ring symmetry‐adapted linear combination orbital of cluster; and (3) the largest Egap of the carborane C2B3H5 is induced by the most effective cap–ring orbital interaction of C2B3H5 cluster. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
A new series of divalent boron‐rare gas cations (Rg = He ∼ Rn, n = 1–4) have been predicted theoretically at the B3LYP, MP2, and CCSD(T) levels to present the structures, stability, charge distributions, bond natures, and aromaticity. The Rg B bond energies are quite large for heavy rare gases and increase with the size of the Rg atom. Because of steric hindrance new Rg atoms introduced to the B4 ring will weaken the Rg B bond. Thus in the Rg B bond has the largest binding energy 90–100 kcal/mol. p‐ has a slightly shorter Rg B bond length and a larger bond energy than o‐ . NBO and AIM analyses indicate that for the heavy Rg atoms Ar ∼ Rn the B Rg bonds have character of typical covalent bonds. The energy decomposition analysis shows that the σ‐donation from rare gases to the boron ring is the major contribution to the Rg B bonding. Adaptive natural density partitioning and nuclear‐independent chemical shift analyses suggest that both and have obvious aromaticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号