首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The introduction of aromatic residues connected by a C?C bond into the non‐reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C?aril‐sLex). In this work, an expedient asymmetric “de novo” synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α‐hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D ‐fructose‐6‐phosphate aldolase and L ‐rhamnulose‐1‐phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate‐dependent aldolases require. In this way, 6‐C‐aryl‐L ‐sorbose, 6‐C‐aryl–L ‐fructose, 6‐C‐aryl–L ‐tagatose, and 5‐C‐aryl‐L ‐xylose derivatives are prepared by using this methodology.  相似文献   

2.
Synthesis of the C?C bonds of ketones relies upon one high‐availability reagent (carboxylic acids) and one low‐availability reagent (organometallic reagents or alkyl iodides). We demonstrate here a ketone synthesis that couples two different carboxylic acid esters, N‐hydroxyphthalimide esters and S‐2‐pyridyl thioesters, to form aryl alkyl and dialkyl ketones in high yields. The keys to this approach are the use of a nickel catalyst with an electron‐poor bipyridine or terpyridine ligand, a THF/DMA mixed solvent system, and ZnCl2 to enhance the reactivity of the NHP ester. The resulting reaction can be used to form ketones that have previously been difficult to access, such as hindered tertiary/tertiary ketones with strained rings and ketones with α‐heteroatoms. The conditions can be employed in the coupling of complex fragments, including a 20‐mer peptide fragment analog of Exendin(9–39) on solid support.  相似文献   

3.
Synthesis of the C?C bonds of ketones relies upon one high‐availability reagent (carboxylic acids) and one low‐availability reagent (organometallic reagents or alkyl iodides). We demonstrate here a ketone synthesis that couples two different carboxylic acid esters, N‐hydroxyphthalimide esters and S‐2‐pyridyl thioesters, to form aryl alkyl and dialkyl ketones in high yields. The keys to this approach are the use of a nickel catalyst with an electron‐poor bipyridine or terpyridine ligand, a THF/DMA mixed solvent system, and ZnCl2 to enhance the reactivity of the NHP ester. The resulting reaction can be used to form ketones that have previously been difficult to access, such as hindered tertiary/tertiary ketones with strained rings and ketones with α‐heteroatoms. The conditions can be employed in the coupling of complex fragments, including a 20‐mer peptide fragment analog of Exendin(9–39) on solid support.  相似文献   

4.
The thiamine diphosphate (ThDP) dependent enzyme acetoin:dichlorophenolindophenol oxidoreductase (Ao:DCPIP OR) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The recombinant enzyme shared close similarities with the acetylacetoin synthase (AAS) partially purified from Bacillus licheniformis suggesting that they could be the same enzyme. The product scope of the recombinant Ao:DCPIP OR was expanded to chiral tertiary α‐hydroxy ketones through the rare aldehyde–ketone cross‐carboligation reaction. Unprecedented is the use of methylacetoin as the acetyl anion donor in combination with a range of strongly to weakly activated ketones. In some cases, Ao:DCPIP OR produced the desired tertiary alcohols with stereochemistry opposite to that obtained with other ThDP‐dependent enzymes. The combination of methylacetoin as acyl anion synthon and novel ThDP‐dependent enzymes considerably expands the available range of C? C bond formations in asymmetric synthesis.  相似文献   

5.
A two‐stage copolycondensation of a mixture of equal parts of isophthalic acid and terephthalic acid first with a′,b′‐dihydroxyacetophenone (a′,b′‐DHAP) and then with isomeric c′,d′‐DHAP was examined at 60 and 80 °C. A structurally selective reaction was observed. At 80 °C, the preformed oligomers from symmetrically substituted 2′,6′‐DHAP reacted better with similarly substituted 2′,6′‐ or 3′,5′‐DHAP to give the copolymers of significantly higher inherent viscosity values than from the reaction with asymmetrically substituted 2′,4′‐DHAP, whereas at 60 °C they did almost equally well with any c′,d′‐DHAP. Similarly, the reaction of oligomers from 2′,4′‐DHAP with asymmetrically substituted 2′,4′‐DHAP or 2,4‐dihydroxybenzophenone yielded better results than those from the reaction with 2′,6′‐ or 3′,5′‐DHAP at both temperatures. The copolycondensations with comonomers of the structure independent of DHAPs were not affected by the preformed oligomers from DHAPs. The results are discussed in terms of the distributions of resulting oligomers determined by gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 616–623, 2003  相似文献   

6.
王科  李晋峰  袁承业  李祖义 《中国化学》2002,20(11):1379-1387
Introduction  Baker’syeast (Saccharomycescerevisiae)iswellrecognizedasavaluablestereoselectivereagentinbio transformationsoforganicmolecules .Theasymmetricre ductionofcarbonylgroupswiththismicrobehasbeenstudiedextensively .Moreover,inthecourseofreductiono…  相似文献   

7.
The chemoenzymatic synthesis of a collection of pyrrolidine‐type iminosugars generated by the aldol addition of dihydroxyacetone phosphate (DHAP) to C‐α‐substituted N‐Cbz‐2‐aminoaldehydes derivatives, catalyzed by DHAP aldolases is reported. L ‐Fuculose‐1‐phosphate aldolase (FucA) and L ‐rhamnulose‐1‐phosphate aldolase (RhuA) from E. coli were used as biocatalysts to generate configurational diversity on the iminosugars. Alkyl linear substitutions at C‐α were well tolerated by FucA catalyst (i.e., 40–70 % conversions to aldol adduct), whereas no product was observed with C‐α‐alkyl branched substitutions, except for dimethyl and benzyl substitutions (20 %). RhuA was the most versatile biocatalyst: C‐α‐alkyl linear groups gave the highest conversions to aldol adducts (60–99 %), while the C‐α‐alkyl branched ones gave moderate to good conversions (50–80 %), with the exception of dimethyl and benzyl substituents (20 %). FucA was the most stereoselective biocatalyst (90–100 % anti (3R,4R) adduct). RhuA was highly stereoselective with (S)‐N‐Cbz‐2‐aminoaldehydes (90–100 % syn (i.e., 3R,4S) adduct), whereas those with R configuration gave mixtures of anti/syn adducts. For iPr and iBu substituents, RhuA furnished the anti adduct (i.e., FucA stereochemistry) with high stereoselectivity. Molecular models of aldol products with iPr and iBu substituents and as complexes with the RhuA active site suggest that the anti adducts could be kinetically preferred, while the syn adducts would be the equilibrium products. The polyhydroxylated pyrrolidines generated were tested as inhibitors against seven glycosidases. Among them, good inhibitors of α‐L ‐fucosidase (IC50=1–20 μM ), moderate of α‐L ‐rhamnosidase (IC50=7–150 μM ), and weak of α‐D ‐mannosidase (IC50=80–400 μM ) were identified. The apparent inhibition constant values (Ki) were calculated for the most relevant inhibitors and computational docking studies were performed to understand both their binding capacity and the mode of interaction with the glycosidases.  相似文献   

8.
Introduction of an L ‐amino acid as a spacer and a urea‐forming moiety in a polymer‐supported bifunctional urea–primary amine catalyst, based on (1R, 2R)‐(+)‐1,2‐diphenylethylenediamine, significantly improves the catalyst’s activity and stereoselectivity in the asymmetric addition of ketones and aldehydes to nitroolefins. Yields and enantioselectivities, unprecedented for immobilized catalysts, were obtained with such challenging donors as acetone, cyclopentanone, and α,α‐disubstituted aldehydes, which usually perform inadequately in this reaction (particularly when a secondary‐amine‐based catalyst is used). Remarkably, though in the examined catalysts the D ‐amino acids as spacers were significantly inferior to the L isomers, for the chosen configuration of the diamine (match–mismatch pairs) the size of the side chain of the amino acid hardly influenced the enantioselectivity of the catalyst. These results, combined with the reactivity profile of the catalysts with substrates bearing two electron‐withdrawing groups and the behavior of the catalysts’ analogues based on tertiary (rather than primary) amine, suggest an enamine‐involving addition mechanism and a particular ordered C? C bond‐forming transition state as being responsible for the catalytic reactions with high enantioselectivity.  相似文献   

9.
S ‐Adenosylmethionine‐dependent methyltransferases (MTs) play a decisive role in the biosynthesis of natural products and in epigenetic processes. MTs catalyze the methylation of heteroatoms and even of carbon atoms, which, in many cases, is a challenging reaction in conventional synthesis. However, C‐MTs are often highly substrate‐specific. Herein, we show that SgvM from Streptomyces griseoviridis features an extended substrate scope with respect to the nucleophile as well as the electrophile. Aside from its physiological substrate 4‐methyl‐2‐oxovalerate, SgvM catalyzes the (di)methylation of pyruvate, 2‐oxobutyrate, 2‐oxovalerate, and phenylpyruvate at the β‐carbon atom. Chiral‐phase HPLC analysis revealed that the methylation of 2‐oxovalerate occurs with R selectivity while the ethylation of 2‐oxobutyrate with S ‐adenosylethionine results in the S enantiomer of 3‐methyl‐2‐oxovalerate. Thus SgvM could be a valuable tool for asymmetric biocatalytic C‐alkylation reactions.  相似文献   

10.
Reported herein is the first example of 2‐allylazaarenes in asymmetric catalysis. Highly γ‐selective allylation was demonstrated for activated ketones, including isatins and trifluoromethyl ketones. In the presence of either an amino‐acid‐based tertiary amine or quaternary ammonium salt catalyst, two series of tertiary hydroxy‐containing moieties were installed at the remote δ‐position of azaarenes in good chemical yields, excellent enantioselectivities, and E /Z ratios. The success of current γ‐selective reactions should provide inspiration for expansion to other allylazaarene derivatives and would open up new paradigms for the synthesis of chiral γ‐ and/or δ‐functionalized azaarenes.  相似文献   

11.
Combining single electron transfer between a donor substrate and a catalyst‐activated acceptor substrate with a stereocontrolled radical–radical recombination enables the visible‐light‐driven catalytic enantio‐ and diastereoselective synthesis of 1,2‐amino alcohols from trifluoromethyl ketones and tertiary amines. With a chiral iridium complex acting as both a Lewis acid and a photoredox catalyst, enantioselectivities of up to 99 % ee were achieved. A quantum yield of <1 supports the proposed catalytic cycle in which at least one photon is needed for each asymmetric C? C bond formation mediated by single electron transfer.  相似文献   

12.
The asymmetric ring‐opening/cyclization of cyclopropyl ketones with primary amine nucleophiles was catalyzed by a chiral N,N′‐dioxide/scandium(III) complex through a kinetic resolution process. A broad range of cyclopropyl ketones and primary amines are suitable substrates of this reaction. The corresponding products were afforded in excellent enantioselectivities and yields (up to 97 % ee and 98 % yield) under mild reaction conditions. This method provides a promising access to chiral 2,3‐dihydropyrroles as well as an effective procedure for the kinetic resolution of 2‐substituted cyclopropyl ketones.  相似文献   

13.
A CuI‐catalyzed reductive coupling of ketone‐derived N‐tosylhydrazones with amides is presented. Under the optimized conditions, an array of N‐tosylhydrazones derived from aryl–alkyl and diaryl ketones could couple effectively with a wide variety of (hetero)aryl as well as aliphatic amides to afford the N‐alkylated amides in high yields. The method represents the very few examples for reliably accessing secondary and tertiary amides through a reductive N‐alkylation protocol.  相似文献   

14.
The asymmetric alkylation of acyclic ketones is a longstanding challenge in organic synthesis. Reported herein are diastereoselective and enantioselective allylic substitutions with acyclic α‐alkoxy ketones catalyzed by a metallacyclic iridium complex to form products with contiguous stereogenic centers derived from the nucleophile and electrophile. These reactions occur between allyl methyl carbonates and unstabilized copper(I) enolates generated in situ from acyclic α‐alkoxy ketones. The resulting products can be readily converted into enantioenriched tertiary alcohols and tetrahydrofuran derivatives without erosion of enantiomeric purity.  相似文献   

15.
A micro flow system consisting of micromixers and microtube reactors provides an effective method for the introduction of two electrophiles onto p‐, m‐, and o‐dibromobenzenes. The Br–Li exchange reaction of p‐dibromobenzene with nBuLi can be conducted by using the micro flow system at 20 °C, although much lower temperatures (p‐bromophenyllithium was allowed to react with an electrophile in the micro flow system at 20 °C. The p‐substituted bromobenzene thus obtained was subjected to a second Br–Li exchange reaction followed by reaction with a second electrophile at 20 °C in one flow. A similar transformation can be carried out with m‐dibromobenzene by using the micro flow system. However, the Br–Li exchange reaction of o‐dibromobenzene followed by reaction with an electrophile should be conducted at ?78 °C to avoid benzyne formation. The second Br–Li exchange reaction followed by reaction with an electrophile can be carried out at 0 °C. By using the present method, a variety of p‐, m‐, and o‐disubstituted benzenes were synthesized in one flow at much higher temperatures than are required for conventional batch reactions.  相似文献   

16.
The construction of all C(sp3) quaternary centers has been successfully achieved under Ni‐catalyzed cross‐electrophile coupling of allylic carbonates with unactivated tertiary alkyl halides. For allylic carbonates bearing C1 or C3 substituents, the reaction affords excellent regioselectivity through the addition of alkyl groups to the unsubstituted allylic carbon terminus. The allylic alkylation method also exhibits excellent functional‐group compatibility, and delivers the products with high E selectivity.  相似文献   

17.
α‐Aminomethylation of (R)‐DIOZ‐alkylated (DIOZ=4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐one) substrates is a key step in the asymmetric synthesis of β2‐amino acids, but it is unfortunately often accompanied by formation of transcarbamation by‐products. Aminomethylation was tested using a range of electrophiles, and the amount of by‐product formation was assessed in each case. Benzyl N‐[(benzyloxy)methyl]carbamate electrophile 3d is unable to form this by‐product due to its inherent benzyl substitution. Use of electrophile 3d showed an improved impurity profile in aminomethylation, thus leading to easier intermediate purification.  相似文献   

18.
Thiamine diphosphate dependent enzymes are well known for catalyzing the asymmetric synthesis of chiral α‐hydroxy ketones from simple prochiral substrates. The steric and chemical properties of the enzyme active site define the product spectrum. Enzymes catalyzing the carboligation of aromatic aldehydes to (S)‐benzoins have not so far been identified. We were able to close this gap by constructing a chimeric enzyme, which catalyzes the synthesis of various (S)‐benzoins with excellent enantiomeric excess (>99 %) and very good conversion.  相似文献   

19.
Undirected C(sp3)?H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C?H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C?H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C?H bonds over tertiary and benzylic C?H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C?H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C?H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R. and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R. to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C?H amidation selectivity in the absence of directing groups.  相似文献   

20.
As alternatives to the common tertiary phosphine/Pd systems, well‐defined N‐heterocyclic carbene–Pd complexes have been proven to be highly efficient precatalysts for intermolecular direct annalution of o‐haloanilines and ketones at lower catalyst loadings. A highly efficient and practical protocol for synthesis of functionalized indoles was developed using (IPr)Pd(acac)Cl as catalyst. Both o‐bromoanilines and o‐chloroanilines gave rise to efficient coupling under the reaction conditions. Related to acyclic ones, cyclic ketones coupled more effectively with o‐haloanilines. With [Pd(IPr)2] as catalyst, the base‐sensitive groups including OH and CO2H groups could be tolerated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号