首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Low‐bandgap conjugated copolymers based on a donor–acceptor structure have been synthesised via palladium‐complex catalysed direct arylation polymerisation. Initially, we report the optimisation of the synthesis of poly(cyclopentadithiophene‐alt‐benzothiadiazole) (PCPDTBT) formed between cyclopentadithiophene and dibromobenzothiadiazole units. The polymerisation condition has been optimised, which affords high‐molecular‐weight polymers of up to M n = 70 k using N‐methylpyrrolidone as a solvent. The polymers are used to fabricate organic photovoltaic devices and the best performing PCPDTBT device exhibits a moderate improvement over devices fabricated using the related polymer via Suzuki coupling. Similar polymerisation conditions have also been applied for other monomer units.  相似文献   

2.
A rapid oxygen‐initiated and ‐regulated controlled radical polymerization was conducted under ambient temperature and atmosphere. The reaction between triethylborane and oxygen provides ethyl radicals, which initiate and mediate the radical polymerization. The controlled radical polymerization was achieved using RAFT chain transfer agents (CTA) without any process of removing oxygen, providing well‐defined polymers with almost full conversion (>95 %) in a short period (15 min). High‐throughput screening was used to discover the suitable conditions for various CTA and monomers. To show the versatility of this method, a polymer library containing 25 well‐defined polymers with different compositions (block and statistical copolymers) and molecular weights were synthesized in 1 h via high‐throughput synthesis technique. A polymer‐painting technique was developed using this method, forming films with spatial control and excellent control in molecular weight and dispersity.  相似文献   

3.
Synthetic polymers have shown promise in combating multidrug‐resistant bacteria. However, the biological effects of sequence control in synthetic antimicrobial polymers are currently not well understood. As such, we investigate the antimicrobial effects of monomer distribution within linear high‐order quasi‐block copolymers consisting of aminoethyl, phenylethyl, and hydroxyethyl acrylamides made in a one‐pot synthesis approach via photoinduced electron transfer–reversible addition–fragmentation chain transfer polymerisation (PET‐RAFT). Through different combinations of monomer/polymer block order, antimicrobial and haemolytic activities are tuneable in a manner comparable to antimicrobial peptides.  相似文献   

4.
Grazing‐incidence X‐ray scattering (GIXS) is widely used to analyze the crystallinity and nanoscale structure in thin polymer films. However, ionizing radiation will generate free radicals that initiate crosslinking and/or chain scission, and structural damage will impact the ordering kinetics, thermodynamics, and crystallinity in many polymers. We report a simple methodology to screen for beam damage that is based on lithographic principles: films are exposed to patterns of X‐ray radiation, and changes in polymer structure are revealed by immersing the film in a solvent that dissolves the shortest chains. The experiments are implemented with high throughput using the standard beam line instrumentation and a typical GIXS configuration. The extent of damage (at a fixed radiation dose) depends on a range of intrinsic material properties and experimental variables, including the polymer chemistry and molecular weight, exposure environment, film thickness, and angle of incidence. The solubility switch for common polymers is detected within 10–60 s at ambient temperature, and we verified that this first indication of damage corresponds with the onset of network formation in glassy polystyrene and a loss of crystallinity in polyalkylthiophenes. Therefore, grazing‐incidence X‐ray “patterning” offers an efficient approach to determine the appropriate data acquisition times for any GIXS experiment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1074–1086  相似文献   

5.
Plasma polymerisation of N ‐isopropyl acrylamide (NIPAAm) presents an exciting route for the production of thermally responsive coatings on a wide variety of substrates for applications in tissue culture and microfluidics. One issue associated with the polymerisation of NIPAAm via plasma polymerisation is the limited volatility of the monomer and the subsequent requirement for monomer and reactor heating to create and maintain the vapour. It is already well established that power is critical in the balance between polymer functionality and coating stability in plasma polymers. However, little is known of how reactor and substrate temperatures may be used to influence the physico‐chemical characteristics of polymers produced from such low‐volatility monomers. In this paper, we examine the effects of a range of plasma deposition parameters on the functionality and stability of plasma‐polymerised NIPAAm surfaces. X‐ray photoelectron spectroscopy (XPS), near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS), ellipsometry and contact angle goniometry have been used to examine coating chemistry, stability in aqueous environments, deposition rates and thermo‐responsive behaviour. Our results indicate that plasma polymerisation at low powers and low temperatures enhances the ability of plasma‐polymerised NIPAAm to display a wettability phase transition, but also contributes to instability of the coating to dissolution or delamination in water. Our spectroscopic measurements confirm that retention of the monomer structure is facilitated by low power and temperature deposition and reveal that conversion of the amide groups to amine and nitrile groups occurs during the polymerisation process, particularly at high discharge powers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal we describe a new bacteria‐mediated iron‐catalysed reversible deactivation radical polymerisation (RDRP), with a range of metal‐chelating agents and monomers that can be used under ambient conditions with a bacterial redox initiation step to generate polymers. Cupriavidus metallidurans, Escherichia coli, and Clostridium sporogenes species were chosen for their redox enzyme systems and evaluated for their ability to induce polymer formation. Parameters including cell and catalyst concentration, initiator species, and monomer type were investigated. Water‐soluble synthetic polymers were produced in the presence of the bacteria with full preservation of cell viability. This method provides a means by which bacterial redox systems can be exploited to generate “unnatural” polymers in the presence of “host” cells, thus setting up the possibility of making natural–synthetic hybrid structures and conjugates.  相似文献   

7.
Several organostibine chain‐transfer agents possessing polar functional groups have been prepared by the reactions of azo initiators and tetramethyldistibine ( 1 ). Carbon‐centered radicals thermally generated from the azo initiators were trapped by 1 to yield the corresponding organostibine chain‐transfer agents. The high yields observed in the synthesis of the chain‐transfer agents strongly suggest that distibines have excellent radicophilic reactivity. As the reactions proceeded under neutral conditions, functional groups that are incompatible with ionic conditions were incorporated into the chain‐transfer agents. The chain‐transfer agents were used in living radical polymerization to synthesize the corresponding α‐functionalized polymers. As the functional groups in the chain‐transfer agents did not interfere with the polymerization reaction, well‐controlled polymers possessing number‐average molecular weights (Mns) predetermined by the monomer/transfer agent ratios were synthesized with low polydispersity indices (PDIs). The organostibanyl ω‐polymer ends were transformed into a number of different functional groups by radical‐coupling, radical‐addition, and oxidation reactions. Therefore, it was possible to synthesize well‐controlled telechelic polymers with the same and also with different functional groups at their α‐ and ω‐polymer ends. Distibine 1 was also found to increase PDI control in the living radical polymerization of styrene and methyl methacrylate (MMA) using a purified organostibine chain‐transfer agent. Well‐controlled poly(methyl methacrylate)s with Mn values ranging from 10 000 to 120 000 with low PDIs (1.05–1.15) were synthesized by the addition of a catalytic amount of 1 . The results have been attributed to the high reactivity of distibine 1 towards polymer‐end radicals, which are spontaneously deactivated to yield organostibine dormant species.  相似文献   

8.
The synthesis of well‐defined polymers in a low‐volume, combinatorial fashion has long been a goal in polymer chemistry. Here, we report the preparation of a wide range of highly controlled homo and block co‐polymers by Enz‐RAFT (enzyme‐assisted reversible addition–fragmentation chain transfer) polymerization in microtiter plates in the open atmosphere. The addition of 1 μm glucose oxidase (GOx) to water/solvent mixtures enables polymerization reactions to proceed in extremely low volumes (40 μL) and low radical concentrations. This procedure provides excellent control and high conversions across a range of monomer families and molecular weights, thus avoiding the need to purify for screening applications. This simple technique enables combinatorial polymer synthesis in microtiter plates on the benchtop without the need of highly specialized synthesizers and at much lower volumes than is currently possible by any other technique.  相似文献   

9.
The synthesis and characterisation of new arborescent architectures of poly(L ‐lysine), called lysine dendrigraft (DGL) polymers, are described. DGL polymers were prepared through a multiple‐generation scheme (up to generation 5) in a weakly acidic aqueous medium by polycondensing Nε‐trifluoroacetyl‐L ‐lysine‐N‐carboxyanhydride (Lys(Tfa)‐NCA) onto the previous generation G(n?1) of DGL, which was used as a macroinitiator. The first generation employed spontaneous NCA polycondensation in water without a macroinitiator; this afforded low‐molecular‐weight, linear poly(L ‐lysine) G1 with a polymerisation degree of 8 and a polydispersity index of 1.2. The spontaneous precipitation of the growing Nε‐Tfa‐protected polymer (GnP) ensures moderate control of the molecular weight (with unimodal distribution) and easy work‐up. The subsequent alkaline removal of Tfa protecting groups afforded generation Gn of DGL as a free form (with 35–60 % overall yield from NCA precursor, depending on the DGL generation) that was either used directly in the synthesis of the next generation (G(n+1)) or collected for other uses. Unprotected forms of DGL G1–G5 were characterised by size‐exclusion chromatography, capillary electrophoresis and 1H NMR spectroscopy. The latter technique allowed us to assess the branching density of DGL, the degree of which (ca. 25 %) turned out to be intermediate between previously described dendritic graft poly(L ‐lysines) and lysine dendrimers. An optimised monomer (NCA) versus macroinitiator (DGL G(n?1)) ratio allowed us to obtain unimodal molecular weight distributions with polydispersity indexes ranging from 1.3 to 1.5. Together with the possibility of reaching high molecular weights (with a polymerisation degree of ca. 1000 for G5) within a few synthetic steps, this synthetic route to DGL provides an easy, cost‐efficient, multigram‐scale access to dendritic polylysines with various potential applications in biology and in other domains.  相似文献   

10.
We report synthesis of the modified fluorene polymers tethered to the heterogeneous types of the fluorescent dyes at the cardo carbon for obtaining the dual‐emissive solid materials. A series of the alternating fluorene copolymers modified with pyrene or 9,10‐diphenylanthracene and BODIPY at the cardo carbon based on the red‐emissive donor–acceptor structure were prepared, and their characteristics were examined. From the measurements of the optical properties, the energy transfer efficiencies were evaluated. In summary, variable energy transfer efficiencies were observed between the side chains and from the side chain to the main chain. It was indicated that the energy transfer efficiencies were strongly depended on the types of the energy donor and the detection conditions as such in the solution or film. Furthermore, it was found that the cardo fluorene units can contribute to the suppression of the energy transfer in the condensed state. Finally, the dual‐emissive polymers were obtained in the film states. This is the first example, to the best of our knowledge, not only to offer systematic information on the energy transfer between the dye molecules and the polymer main‐chains via the cardo structure but also to demonstrate the polymer‐based optical materials with the dual‐emission properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2026–2035  相似文献   

11.
The synthesis of linear‐ and (1→6)‐branched β‐(1→4)‐d ‐galactans, side‐chains of the pectic polysaccharide rhamnogalacturonan I is described. The strategy relies on iterative couplings of n‐pentenyl disaccharides followed by a late stage glycosylation of a common hexasaccharide core. Reaction with a covalent linker and immobilization on N‐hydroxysuccinimide (NHS)‐modified glass surfaces allows the generation of carbohydrate microarrays. The glycan arrays enable the study of protein–carbohydrate interactions in a high‐throughput fashion, demonstrated herein with binding studies of mAbs and a CBM.  相似文献   

12.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

13.
Ultra‐high‐molecular‐weight (UHMW) polymers display outstanding properties and hold potential for wide applications. However, their precise synthesis remains challenging. Herein, we developed a novel reversible‐deactivation radical polymerization based on the strong and selective fluorine–fluorine interaction, allowing chain‐transfer agents to spontaneously differentiate into two groups that take charge of the chain growth and reversible deactivation of the growing chains, respectively. This method enables dramatically improved livingness of propagation, providing UHMW polymers with a surprisingly narrow molecular weight distribution (?≈1.1) from a variety of fluorinated (meth)acrylates and acrylamide at quantitative conversions under visible‐light irradiation. In situ chain‐end extensions from UHMW polymers facilitated the synthesis of well‐defined block copolymers, revealing the excellent chain‐end fidelity achieved by this method.  相似文献   

14.
Palladium‐catalyzed direct arylation polycondensation afforded a bithiazole‐based homopolymer and donor–acceptor (D–A)‐type copolymers where the bithiazole unit served as an acceptor unit. The results of polymerization strongly depended on the solubility of the polymers; long alkyl chain substituents were required for the formation of high‐molecular‐weight polymers in high yields owing to low solubility of the bithiazole‐based polymers. X‐ray diffraction studies revealed that the obtained polymers were highly crystalline. In particular, a well‐ordered lamellar structure was observed in the D–A‐type copolymer with flexible alkyl chains after thermal annealing, presumably owing to the combination of interchain interactions between the bithiazole units and the electrostatic D–A interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1396–1402  相似文献   

15.
We describe the development of chain‐growth condensation polymerization for the synthesis of well‐defined π‐conjugated polymers via a new polymerization mechanism, catalyst‐transfer polymerization. We first studied the condensation polymerization of Grignard‐type hexylthiophene monomer with a Ni catalyst as a part of our research on chain‐growth condensation polymerization, and found that this polymerization also proceeded in a chain‐growth polymerization manner. However, the polymerization mechanism involving the Ni catalyst was different from that of previous chain‐growth condensation polymerizations based on substituent effects; the Ni catalyst catalyzed the coupling reaction of the monomer with the polymer, followed by the transfer of Ni(0) to the terminal C? Br bond of the elongated molecule. This catalyst‐transfer condensation polymerization is generally applicable for the synthesis of polythiophene with an etheric side chain and poly(p‐pheneylene), as well as for the synthesis of polyfluorene via the Pd‐catalyzed Suzuki–Miyaura coupling reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 753–765, 2008  相似文献   

16.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

17.
A versatile method is described to engineer precisely defined protein/peptide–polymer therapeutics by a modular approach that consists of three steps: 1) fusion of a protein/peptide of interest with an elastin‐like polypeptide that enables facile purification and high yields; 2) installation of a clickable group at the C terminus of the recombinant protein/peptide with almost complete conversion by enzyme‐mediated ligation; and 3) attachment of a polymer by a click reaction with near‐quantitative conversion. We demonstrate that this modular approach is applicable to various protein/peptide drugs and used it to conjugate them to structurally diverse water‐soluble polymers that prolong the plasma circulation duration of these proteins. The protein/peptide–polymer conjugates exhibited significantly improved pharmacokinetics and therapeutic effects over the native protein/peptide upon administration to mice. The studies reported here provide a facile method for the synthesis of protein/peptide–polymer conjugates for therapeutic use and other applications.  相似文献   

18.
Libraries of 3‐aminopropyl‐terminated poly(dimethylsiloxane) (APT–PDMS) and poly(?‐caprolactone)–poly(dimethylsiloxane)–poly(?‐caprolactone) (PCL—PDMS–PCL) triblock copolymers were synthesized. Preliminary experiments were carried out to select an appropriate catalyst and route for the poly(dimethylsiloxane) synthesis, and trial experiments were conducted to verify the successful synthesis of the intended polymer compositions. Then, a series of APT–PDMS oligomers were synthesized with an automated combinatorial high‐throughput synthesis system to cover a molecular weight range of 2500–50,000 g/mol. Trial PCL—PDMS–PCL triblock copolymers were synthesized with the automated reactor system and characterized in detail with rapid gel permeation chromatography, high‐throughput Fourier transform infrared, nuclear magnetic resonance, and differential scanning calorimetry. Finally, two library synthesis experiments were carried out in which the lengths of both the poly(dimethylsiloxane) and poly(?‐caprolactone) blocks in the PCL—PDMS–PCL triblock copolymers were varied. The results obtained from these experiments demonstrated that it was possible to synthesize libraries of well‐defined APT–PDMS oligomers and PCL—PDMS–PCL triblock copolymers with an automated high‐throughput system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4880–4894, 2006  相似文献   

19.
A series of novel styrene derived monomers with triphenylamine‐based units, and their polymers have been synthesized and compared with the well‐known structure of polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine with respect to their hole‐transporting behavior in phosphorescent polymer light‐emitting diodes (PLEDs). A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3‐methylphenyl‐aniline, 1‐ and 2‐naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems with the following device configuration: glass/indium–tin–oxide/PEDOT:PSS/polymer‐blend/CsF/Ca/Ag. In addition to the hole‐transporting host polymer, the polymer blend includes a phosphorescent dopant [Ir(Me‐ppy)3] and an electron‐transporting molecule (2‐(4‐biphenyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole). We demonstrate that two polymers are excellent hole‐transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole‐substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A?1 and a brightness of 6700 cd m?2 at 10 V is accessible. The phenothiazine‐functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well‐known polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A?1 and a brightness of 2500 cd m?2 (10 V). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3417–3430, 2010  相似文献   

20.
Four para‐linked or meta‐linked cationic water‐soluble fluorene‐containing poly(aryleneethynylene)s (PAEs) were synthesized to investigate the solvent‐induced π‐stacked self‐assembly. These PAE backbones are composed of fluorenylene and phenylene units, which are alternatively linked by ethynylene bonds. UV–vis absorption and photoluminescence spectra were used to study their conformational changes as solvent was gradually changed from MeOH to H2O. In pure water, with gradually increased meta‐phenylene content (0, 50, and 100%), they underwent a gradual transition process of conformation from disordered aggregate structure to helix structure, which was not compactly folded. Moreover, the polymer with an ammonium‐functionalized side chain on the meta‐phenylene unit appeared to adopt a more incompact or extended helix conformation than the corresponding one without this side chain. Furthermore, the conformational changes of these cationic PAEs in H2O were used to study their effects on biological detection. Rubredoxin (Rd), a type of anionic iron–sulfur‐based electron transfer protein, was chosen to act as biological analyte in the fluorescence quenching experiments of these polymers. Preliminary results suggest that they all exhibit amplified fluorescence quenching, and that the polymer with more features of helix conformation tends to be quenched by Rd more efficiently. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5424–5437, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号