首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study an inflationary scenario where thermal inflation is followed by fast-roll inflation. This is a rather generic possibility based on the effective potentials of spontaneous symmetry breaking in the context of particle physics models. We show that a large enough expansion could be achieved to solve cosmological problems. However, the power spectrum of primordial density perturbations from the quantum fluctuations in the inflaton field is not scale invariant and thus inconsistent with observations. Using the curvaton mechanism instead, we can obtain a nearly scale invariant spectrum, provided that the inflationary energy scale is sufficiently low to have long enough fast-roll inflation to dilute the perturbations produced by the inflaton fluctuations.  相似文献   

2.
The influence of homogeneous surface perturbations on the surface critical behavior of the two-dimensional Ising model is studied through finite-size scaling and conformal invariance. Quantum chains of up to 2000 spins are studied in the fermionic version of the model. The results are deduced from the numerical solution of an eigenvalue equation for the excitation spectrum and show that conformal invariance still works for irrelevant surface perturbations.  相似文献   

3.
Experiments were carried out on ultrasonic cavitation in glycerin. The zone near the emitter has a structure from interacting gas-vapor bubbles; this structure takes the form of fractal clusters. The photometry of passed laser emission was the tool for studying dynamics of fluctuations. In transitive mode, the power spectrum of fluctuation varies by the law inversely proportional to frequency. Distributions of local fluctuations are different from Gaussian and exhibit the property of scale invariance. The qualitative behavior of the frequency dependence of the spectral fluctuation density was tested while varying the power of the ultrasonic emitter. It was demonstrated that the growth of the high-frequency margin of flicker-type behavior evidences for growing instability and can be considered as a forerunner of possible large-scale outbursts. The work was financially supported by the Russian Foundation for Basic Research (Grant No. 05-08-01320a).  相似文献   

4.
We develop a nonlinear two-dimensional fluid model of whistler turbulence that includes effect of electron fluid density perturbations. The latter is coupled nonlinearly with wave magnetic field. This coupling leads essentially to finite compressibility effects in whistler turbulence model. We find from our simulations that despite strong compressibility effects, the density fluctuations follow the evolution of the wave magnetic field fluctuations. In a characteristic regime where large scale whistlers are predominant, the coupled density fluctuations are found to follow a Kolmogorov-like phenomenology in the inertial range turbulence. Consequently, the turbulent energy is dominated by the large scale (compared to electron inertial length) eddies and it follows a Kolmogorov-like k−7/3 spectrum, where k is a characteristic wavenumber.  相似文献   

5.
We investigate the primordial power spectrum of the density perturbations based on the assumption that space is non-commutative in the early stage of inflation, and constrain the contribution from non-commutative geometry using CMB data. Due to the non-commutative geometry, the primordial power spectrum can lose rotational invariance. Using the k-inflation model and slow-roll approximation, we show that the deviation from rotational invariance of the primordial power spectrum depends on the size of non-commutative length scale L s but not on sound speed. We constrain the contributions from the non-commutative geometry to the covariance matrix of the harmonic coefficients of the CMB anisotropies using five-year WMAP CMB maps. We find that the upper bound for L s depends on the product of sound speed and slow-roll parameter. Estimating this product using cosmological parameters from the five-year WMAP results, the upper bound for L s is estimated to be less than 10?27 cm at 99.7% confidence level.  相似文献   

6.
Within recently proposed scenario which explains flatness of the spectrum of scalar cosmological perturbations by a combination of conformal and global symmetries, we discuss the effect of weak breaking of conformal invariance. We find that the scalar power spectrum obtains a small tilt which depends on both the strength of conformal symmetry breaking and the law of evolution of the scale factor.  相似文献   

7.
Recent measurements on thin metal films suggest a pulse model of resistance fluctuations in which scale similarity and power law spectra are only approximate. We show that such a pulse model is consistent with stationary Gaussian resistance fluctuations. This is to be contrasted with the phenomenological behavior, of fluctuations near phase transitions and in turbulent fluids where the fluctuations are non-Gaussian, but exhibit scale similarity of deep physical origin. We then critically examine other tests of the Gaussian behavior of the fluctuating voltageV(t) across a resistor. These include the relaxation of the conditional mean V(t)¦V(0)=V 0, and the spectrum ofV 2(t). We consider also the question of time reversal invariance. We further ask under what conditions 1/f noise can be measured through fluctuations of the Johnson noise power with no applied voltage. We emphasize that this possibility, suggested and observed by Voss and Clarke, requires thatV(t) contain a non-Gaussian component.  相似文献   

8.
We present a study of density fluctuations in two-dimensional soap-film convection. When the temperature difference (DeltaT) imposed vertically along the film is smaller than a critical value (DeltaT(C) approximately 48 K), the convective motion is in a strongly stratified state and the frequency power spectrum of density fluctuations shows a Bolgiano-like scaling f(-7/5) in the buoyancy subrange. When DeltaT>DeltaT(C), the fluid motion crosses over to a strongly mixed state characterized by the emergence of a large-scale circulation. The density power spectrum in this state has a passive-scalar-like scaling f(-1.0).  相似文献   

9.
Relativistic hydrodynamic scaling or boost invariance is a particularly important hydrodynamic regime, describing collective flows of relativistic many body systems and is used in the interpretation of experiments from high-energy cosmic rays to relativistic heavy-ion collisions. We show evidence for the emergence of hydrodynamic scaling from the dynamics of relativistic quantum field theory. We consider a scalar lambdaphi(4) model in 1+1 dimensions in the Hartree approximation and study the relativistic collisions of two kinks and the decay of a localized high-energy density region. We find that thermodynamic scalar isosurfaces show approximate boost invariance at high-energy densities.  相似文献   

10.
We study a system of hard-core particles sliding locally downwards on a fluctuating one-dimensional surface characterized by a dynamical exponent z and no overall tilt. In numerical simulations, an initially random particle density is found to coarsen and obey scaling with a growing length scale approximately t(1/z). The structure factor deviates from the Porod law for the models studied. The steady state is unusual in that the density-segregation order parameter shows strong fluctuations. The two-point correlation function has a scaling form with a cusp at small argument which we relate to a power law distribution of particle cluster sizes. Exact results on a related model of surface depths provide insight into this behavior.  相似文献   

11.
The dilaton-gravity sector of a linear in the scalar curvature, scale invariant Two Measures Field Theory (TMT), is explored in detail in the context of closed FRW cosmology and shown to allow stable emerging universe solutions. The model possesses scale invariance which is spontaneously broken due to the intrinsic features of the TMT dynamics. We study the transition from the emerging phase to inflation, and then to a zero cosmological constant phase. We also study the spectrum of density perturbations and the constraints that impose on the parameters of the theory.  相似文献   

12.
N-body simulations of structure formation with scale-invariant primordial perturbations show significantly more virialized objects of dwarf-galaxy mass in a typical galactic halo than are observed around the Milky Way. We show that the dearth of observed dwarf galaxies could be explained by a dramatic downturn in the power spectrum at small distance scales. This suppression of small-scale power might also help mitigate the disagreement between cuspy simulated halos and smooth observed halos, while remaining consistent with Lyman-alpha-forest constraints on small-scale power. Such a spectrum could arise in inflationary models with broken-scale invariance.  相似文献   

13.
Approximate de Sitter symmetry of inflating Universe is responsible for the approximate flatness of the power spectrum of scalar perturbations. However, this is not the only option. Another symmetry that can explain nearly scale-invariant power spectrum is conformal invariance. We give a short review of models based on conformal symmetry that lead to the scale-invariant spectrum of the scalar perturbations. We discuss also potentially observable features of these models.  相似文献   

14.
《Physica A》2006,363(2):393-403
We address the general problem of how to quantify the kinematics of time series with stationary first moments but having non stationary multifractal long-range correlated second moments. We show that a Markov process is sufficient to model important aspects of the multifractality observed in financial time series and propose a kinematic model of price fluctuations. We test the proposed model by analyzing index closing prices of the New York Stock Exchange and the DEM/USD tick-by-tick exchange rates obtained from Reuters EFX. We show that the model captures the characteristic features observed in actual financial time series, including volatility clustering, time scaling and fat tails in the probability density functions, power-law behavior of volatility correlations and, most importantly, the observed nonuniversal multifractal singularity spectrum. Motivated by our finding of strong agreement between the model and the data, we argue that at least two independent stochastic Gaussian variables are required to adequately model price fluctuations.  相似文献   

15.
Observation of density fluctuations in tokamak plasmas is important to study the plasma confinement and to perform high power heating of the plasma. We observed the density fluctuations by means of an HCN laser scattering method during rf heating in the ion-cyclotron range of frequency on a tokamak plasma.The density fluctuations at the drift wave frequency are not enhanced so much by the heating, but the frequency spectrum is shifted to higher frequency. The increase of the density fluctuation level during the heating has been observed only in low-frequency region owing to MHD activity.  相似文献   

16.
We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wave numbers with a k(-2)_(||) spectrum but is also consistent with the presence of a "critical balance" style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wave vectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3.  相似文献   

17.
We investigate the shape as well as the size- and temperature-dependence of the conductance noise spectrum of a small system containing electrons and both fixed and mobile scatterers. If the number of mobile scatterers within a phase-coherent region is sufficiently large, the temporal variation of the conductance can be viewed as a random walk process limited by the universal conductance fluctuations, resulting in a practically Lorentzian power spectrum. We discuss the conditions under which the noise spectrum of a system consisting of many phase-coherent regions is either Lorentzian or 1/f-like. The temperature-dependence of the power spectrum is determined by the hopping mechanism and the variation of the phase breaking length. As a function of temperature the spectrum satisfies power law scaling relations with exponents depending on the dimension and the temperature range; the spectral intensity can both increase and decrease with decreasing temperature.  相似文献   

18.
We investigate thermal inflation in double-screen entropic cosmology. We find that its realization is general, resulting from the system evolution from non-equilibrium to equilibrium. Furthermore, going beyond the background evolution, we study the primordial curvature perturbations arising from the universe interior, as well as from the thermal fluctuations generated on the holographic screens. We show that the power spectrum is nearly scale-invariant with a red tilt, while the tensor-to-scalar ratio is in agreement with observations. Finally, we examine the non-Gaussianities of primordial curvature perturbations, and we find that a sizable value of the non-linearity parameter is possible due to holographic statistics on the outer screen.  相似文献   

19.
We describe the first measurements of line-density fluctuations and spatial correlations of quantum turbulence in superfluid 3He-B. All of the measurements are performed in the low-temperature regime, where the normal-fluid density is negligible. The quantum turbulence is generated by a vibrating grid. The vortex-line density is found to have large length-scale correlations, indicating large-scale collective motion of vortices. Furthermore, we find that the power spectrum of fluctuations versus frequency obeys a -5/3 power law which verifies recent speculations that this behavior is a generic feature of fully developed quantum turbulence, reminiscent of the Kolmogorov spectrum for velocity fluctuations in classical turbulence.  相似文献   

20.
We analyze particle velocity fluctuations in a simulated granular system subjected to homogeneous quasistatic shearing. We show that these fluctuations share the following scaling characteristics of fluid turbulence in spite of their different physical origins: (i) scale-dependent probability distribution with non-Gaussian broadening at small time scales; (ii) spatial power spectrum of the velocity field showing a power-law decay, reflecting long-range correlations and the self-affine nature of the fluctuations; and (iii) superdiffusion of particles with respect to the mean background flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号