首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Sonochemiluminescence (SCL) from aqueous solution of lucigenin (Luc2+) has been studied using aliphatic amines as coreactant. The SCL intensity are strongly dependent on the dissolved gases such as air, oxygen, nitrogen and argon. The most strong SCL signals are observed from oxygen saturated alkaline solution containing Luc2+ when small amount of trialkylamine, such as tripropylamine (TPrA) was added into the solution. In an ultrasonic field, TPrA can adsorb onto the cavitation bubble/solution interface where TPrA is oxidized by OH to form a radical cation TPrA+ and subsequently produce a highly reducing TPrA species through a deprotonation reaction of the TPrA+. TPrA is suggested to initiate the reduction reactions of Luc2+ and molecule oxygen to produce Luc+ and superoxide radical anion (O2), respectively. The radical-radical coupling reaction between Luc+ and O2 is expected to initiate the light emission. The production of O2 is examined by spectrofluorometric method using 2-(2-pyridyl)benzothiazoline as a fluorescent probe. The results show that the production of O2 by ultrasound was more efficient in oxygen saturated solution in the presence of coreactants, consistent with the results with SCL measurements.  相似文献   

2.
The site-selective excitation and emission spectroscopy, and luminescence decay have been investigated under a pulsed, tunable, narrowband dye laser of the 5D07F0 region in the europium ions-doped lead tungstate PbWO4 (PWO) in single crystal. In as-grown sample, the experimental results show that there is only one 7F05D0 excitation transition indicating the only one Eu3+ site in PbWO4 lattices. The sequential annealing treatments were conducted to investigate the effects of oxygen components on the microstructure environments of Eu3+ in the lattices. The site distribution of Eu3+ was changed by the annealing in air atmosphere, which could create new sites in PWO lattices. Confirmation of interstitial oxygen and interpretations of charge compensation mechanism for the observed new sites were discussed in the context of site-selective excitation and emission spectra. The main Eu3+ site is related to the charge compensation by the [(EuPb3+)-V″Pb-(EuPb3+)] complex; the other minor new sites after annealing are originated from [(EuPb3+)-O″i-(EuPb3+)] defects. Emission spectra excited by 355-laser and RT-Raman spectra were also measured.  相似文献   

3.
Information concerning the effect of irradiation on the optical properties of materials in the infrared, sub-mm-and mm-wavelength regions is of increasing importance in fusion plasma diagnostics. The radiation induced transmission loss of a number of materials has therefore been investigated at wavelengths in the ranges 200 nm to 40 μm and 0.23 to 2.0 mm. The samples were irradiated with doses of up to 1010 rad in a nuclear reactor. While germanium shows considerable transmission loss at doses as low as 106 rad, and the transmission of TPX decreases at 109 rad, other materials, e.g. fused quartz and possibly ZnSe, exhibit sufficient radiation hardness for use in fusion plasma diagnostics.  相似文献   

4.
An experimental setup for studying optical materials under the action of plasma-emitted intense (up to 105 W/cm2) ultraviolet and vacuum ultraviolet radiation is described, and methods for estimating the radiation damage are developed. The damage produced in calcium fluoride ionic crystals at ~300 K by low (103 rad) and moderate (106 rad) absorbed doses is experimentally estimated.  相似文献   

5.
Application of a fibre-optic Sagnac interferometer as a rotational seismometer is presented in this paper. It is a new device which parameters (sensitivity equal to 4.3×10−8 rad/s for 2σ) are comparable with the parameters of typical mechanical rotational seismometers. However, a direct measurement of rotation without influence of linear motions for fibre-optic rotational seismometer designed it for a direct measurement of a ground rotation component. Experimental data obtained during simultaneous application of the above two types of sensors are also presented. Research of near-field seismic events, the amplitude of which has been identified in the range of 1.5×10−6 rad/s to 2×10−7 rad/s, shows directly that, so-called, seismic rotational waves exist independently of typical seismic waves generated during earthquakes.  相似文献   

6.
An experimental method for the compensation of the noise originated by the laser ray angular oscillations was proposed and experimentally proved for the Precision Laser Inclinometer (PLI). The PLI noise spectral density was reduced by factor 30× and reached 10–8 rad/Hz1/2 level at the frequency of 5 × 10–5 Hz. The angular noise of a laser ray leaving the one-mode optical fiber in the vacuum and in stabilized temperature conditions has been measured. The amplitude of the oscillations for one-day observation reached 0.46 μrad.  相似文献   

7.
Passively mode-locked Nd: YAG (at room temperature) and ruby (at ≈100 K) lasers with unstable confocal resonators are described. They generated ultrashort pulses with a single pulse energy up to 50 mJ (Nd: YAG) and 50–100 mJ (ruby) and duration ≈40 ps. The active volume was only 5–10 cm3. A beam divergence ≈3 x 10-4 rad close to the diffraction limit and high brightness of radiation ≈1017 W cm-2 srad-1 were obtained.  相似文献   

8.
The optical lever serves to measure small angular displacements. We use one here in conjunction with a twin photodiode and lock-in amplifier to measure the amplitude and phase of a rotational oscillation. This simple combination permits an extremely low noise level; in our experiment the noise level was 10-13 rad, or .  相似文献   

9.
Zinc oxide NPs were synthesized solvothermally within sonochemical mediation and characterized by XRD, FTIR, SEM, EDX, elemental mapping, TEM and UV–vis. spectrophotometry. To evaluate the hydroxyl radicals (OH) scavenging activity of arils extract of Egyptian (EGY-PAM) and Yemeni Punica granatum (YEM-PAM), the developed zinc oxide nano particles (ZnO NPs) as a highly productive source of hydroxyl radicals (under Solar-illumination) was used. The yield of OH was trapped and probed via fluorimetric monitoring. This suits the first sensitive/selective photoluminescent avenue to evaluate the OH scavenging activity. The high percentage of DPPH radical scavenging reflected higher contents of phenolics, flavonoids, and anthocyanins that were found in EGY-PAM and YEM-PAM. Although, some secondary metabolites contents were significantly different in EGY-PAM and YEM-PAM, the traditional DPPH radical scavenging methodology revealed insignificant IC50. Unlike, the developed fluorimetric probing, sensitively discriminated the OH scavenging activity with IC50 (105.7 µg/mL) and lower rate of OH productivity (k = 0.031 min−1) in case of EGY-PAM in comparison to IC50 (153.4 µg/mL) and higher rate of OH productivity (k = 0.053 min−1) for YEM-PAM. Our findings are interestingly superior to the TBHQ that is synthetic antioxidant. Moreover, our developed methodology for fluorimetric probing of OH radicals scavenging, recommends EGY-PAM as OH radicals scavenger for diabetic patients while YEM-PAM exhibited a better OH radicals scavenging appropriate for high blood pressure patients. More interestingly, EGY-PAM and YEM-PAM exhibited high anticancer potentiality. The aforementioned OH and DPPH scavenging activities as well as the anticancer potentiality present EGY-PAM and YEM-PAM as promising sources of natural antioxidants, that may have crucial roles in some chronic diseases such as diabetics and hypertension in addition to cancer therapeutic protocols.  相似文献   

10.
Water sonolysis leads to the formation of hydroxyl radicals (OH). Various techniques are used to detect the OH production and thus to assess the level of ultrasound-mediated cavitation generated in vitro. In this study, we used terephthalic acid (TA) as an OH trap. This method is based on the fluorescent properties of hydroxyterephthalic acid (HTA) formed by the reaction of TA with OH and used as an indicator of the degree of inertial cavitation caused.The experimental system is comprised mainly of a focused piezoelectric ultrasound transmitter and a measurement cell containing 1X PBS/TA diluted solution. In the first part, we aimed to characterize the most appropriate experimental conditions (TA dosimeter solution, irradiation time) in order to optimize the resulting HTA fluorescence values. Then, we could determine that the HTA production increased with the level of the cavitation phenomenon caused by the acoustic power from which OH production may be estimated.  相似文献   

11.
Spherical gold nanoparticles (AuNPs) were selectively synthesized through sonochemical reduction of tetrachloride gold(III) ions ([AuCl4]) in an aqueous solution of hydrogen tetrachloroaurate(III) tetrahydrate (HAuCl4·4H2O) with the aid of hydrogen (H2) gas in the absence of any additional capping agents. On the other hand, various shaped-AuNPs such as spherical nanoparticles, triangular and hexagonal plates were formed from sonochemical reduction of [AuCl4] in argon (Ar)-, nitrogen (N2)- or oxygen (O2)-purged aqueous [AuCl4] solutions. The selective fabrication of spherical AuNPs assisted by H2 gas is most likely attributed to the generation of hydrogen radicals (H) promoted by the reaction of H2 introduced and hydrogen oxide radicals (OH) produced by sonolysis of water.  相似文献   

12.
Hydrodynamic cavitation (HC) and Fe(II) are advanced oxidation processes, in which pentachlorophenol (PCP) is treated by the redox method of activating persulfate (PS). The kinetics and mechanism of the HC and Fe(II) activation of PS were examined in aqueous solution using an electron spin resonance (ESR) spin trapping technique and radical trapping with pure compounds. The optimum ratio of Fe(II)/PS was 1:2, and the hydroxyl radical (HO) and sulfate radical (SO4) generation rate were 5.56 mM h−1 and 8.62 μM h−1, respectively. The generation rate and Rct of HO and SO4 at pH 3 and 50 °C in the Fe(II)/PS/HC system are 7584.6 μM h−1, 0.013 and 24.02 μM h−1, 3.95, respectively. The number of radicals was reduced as the pH increased, and it increased with increasing temperature. The PCP reaction rate constants was 4.39 × 10−2 min−1 at pH 3 and 50 °C. The activation energy was 10.68 kJ mol−1. In addition, the mechanism of PCP treatment in the Fe(II)/PS/HC system was a redox reaction, and the HO/SO4 contribution was 81.1 and 18.9%, respectively. In this study, we first examined PCP oxidation through HO and SO4 quantification using only the Fe(II)/PS/HC process. Furthermore, the results provide the foundation for activation of PS by HC and Fe(II), but also provide a data basis for similar organic treatments other than PCP.  相似文献   

13.
A principally new method of the measurement of a seismic slope of the Earth surface is suggested. The method makes it possible to stabilize the position of the laser beam as a highly extended coordinate axis in the metrological support of the precision construction of large-scale physical installations. The method has been tested experimentally: for the first time, low-frequency periodic angular oscillations have been registered with an amplitude of 5 × 10?7 rad and the noise registration value of 2.5 × 10?8 rad. The measurements were taken at CERN, during the construction of the spectrometric complex ATLAS.  相似文献   

14.
A highly sensitive chemiluminescence (CL) method for the determination of nitrofurans (NFs) was developed based on the enhancement of CL intensity of luminol–H2O2–NFs system by silver nanoparticles (AgNPs). It was supposed that the oxygen-related radicals of OH and superoxide radical (O2?) could be produced when NFs reacted with H2O2. Furthermore, the enhancement mechanism was originated from the reinforcer of AgNPs, which could catalyze the generation of the OH radical. Then OH radicals reacted with luminol anion and HO2? to form luminol radical (L?) and O2?. The excited state 3-aminophthalate anion was obtained in the reaction of L? and O2?, which was the emitter (luminophor) in the luminol–H2O2 CL reaction system and the maximal emission of the CL spectrum was at 425 nm. The experiments of scavenging oxygen-related radicals were done to confirm these reactive oxygen species participated in the CL reaction. The limits of detection (LOD) (S/N=3) were 8×10?7 g mL?1 for furacilin, 8×10?8 g mL?1 for furantoin, 4×10?8 g mL?1 for furazolidone and 2×10?7 g mL?1 for furaltadone. The proposed method was successfully applied to the determination of NFs in feeds and pharmaceutical samples.  相似文献   

15.
Hydroxyl radical (OH) scavengers are commonly used in sonochemistry to probe the site and nature of reaction in aqueous cavitational systems. Using pulsed wave (PW) ultrasound with comparative sonochemistry we evaluated the performance of OH scavengers (i.e., formic acid, carbonic acid, terephthalic acid/terephthalate, iodide, methanesulfonate, benzenesulfonate, and acetic acid/acetate) in a sonochemical system to determine which OH scavengers react only in bulk solution and which OH scavengers interact with cavitation bubbles. The ability of each scavenger to interact with cavitation bubbles was assessed by comparing the pulse enhancement (PE) of 10 μM of a probe compound, carbamazepine (CBZ), in the presence and absence of a scavenger. Based on PE results, acetic acid/acetate appears to scavenge OH in bulk solution, and not interact with cavitation bubbles. Methanesulfonate acts as reaction promoter, increasing rather than inhibiting the degradation of CBZ. For formic acid, carbonic acid, terephthalic acid/terephthalate, benzenesulfonate, and iodide, the PE was significantly decreased compared to in the absence of the scavenger. These scavengers not only quench OH in bulk solution but also affect the cavity interface. The robustness of acetic acid/acetate as a bulk OH scavenger was validated for pH values between 3.5 and 8.9 and acetic acid/acetate concentrations from 0.5 to 0.1 M.  相似文献   

16.
Abstract

A study has been made of the relative thermoluminescence response to α- and β-radiation of six phosphors (two types of natural fluorite, CaF2: Mn, CaF2: Tb, CaSO4: Mn and quartz) using samples which are thin compared to the range of the α-particles. The α- and β-radiations induce the same glow peaks, but at low doses (<100 rads) the TL response per rad of α-radiation (3.7 MeV) is less than that per rad of β-radiation in all the glow peaks studied. The α-efficiency ranges from 53 per cent for CaF2: Mn to 2 per cent for quartz (110°C peak) at 3.7 MeV and decreases with decreasing α-particle energy. At higher doses (106?107 rads) the TL responses to α- and β-radiation become equal within 15 per cent; most of the glow peaks are in or near saturation at these doses. The higher the β-dose at which a peak saturates, the higher is the α-efficiency (at low doses) of that peak. The results support the interpretation that the α-efficiency is low because the phosphor is near or in saturation in the localized region near the α-path. This interpretation is given quantitative support by a theoretical calculation of the localized energy-density.  相似文献   

17.
A simple method to amplify laser radiation is proposed: the divergence is nearly diffraction limited and the intensity distribution profile is gaussian (independent of the spatial parameters of the input signal). The amplification of the laser radiation is achieved using the quasi-waveguide laser of a solution of rhodamin 6G with a concentration of 10-2 mol/l. A hundred fold intensity amplification with a divergence of 6 × 10-4 rad is achieved, the latter being only 1.4 times more than the diffraction limited divergence of the system.  相似文献   

18.
In this report a high accuracy method for an interferometric calibration of the Precision Laser Inclinometer (PLI) is proposed. The method is based on the simultaneous measurement of: (a) the PLI base calibration slope (angle), set by a piezoelectric positioner, via laser interferometry and (b) the PLI response signal. A calibration coefficient of 322.5 ± 1.9 μrad/V has been determined experimentally in an interval [4 × 10–7, 4 × 10–6] rad in which there is a linear dependence between the PLI-signal and the calibration angle.  相似文献   

19.
The sonochemical reduction of MnO4 to MnO2 in aqueous solutions was investigated as a function of alcohol concentration under Ar. The rate of MnO4 reduction initially decreased with increasing alcohol concentration, and then increased when the alcohol concentration was increased further. The concentrations at which the reduction rates were minimum depended on the hydrophobic properties of the added alcohols under ultrasonic irradiation. At low concentrations, the alcohols acted as OH radical scavengers; at high concentrations, they acted as reductant precursors: Rab, formed by abstraction reactions of the alcohols with sonochemically formed OH radicals or H atoms, and Rpy, formed by alcohol pyrolysis under ultrasonic irradiation. The results suggest that the reactivity order of the sonochemically formed reducing species with MnO4 at pH 7–9 is the sum of H2O2 and H > Rpy > Rab. The peak wavelengths of MnO2 colloidal solutions formed at high 1-butanol concentrations shifted to shorter wavelengths, suggesting the formation of small particles at high 1-butanol concentrations. The rates of sonochemical reduction of MnO2 to Mn2+ in the presence of 1-butanol were slower than that in the absence of 1-butanol, because the sonochemical formation of H2O2 and H, which act as reductants, was suppressed by 1-butanol in aqueous solutions.  相似文献   

20.
We have measured the changes in the polarization state of a monochromatic (λ=514.5 nm) light beam on reflection at normal incidence by a multilayer dielectric mirror placed in a time-modulated magnetic field. The dominant effect is a Faraday rotationΦ?3.7×10?10 rad/G. The sensitivity (around 40Hz) obtained is \( \simeq 6 \times 10^{ - 9} {\text{ rad/}}\sqrt {{\text{Hz}}} \) which is dominated by the shot-noise limit (100 mW of light power).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号