首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intermolecular interactions of eleven different fluoroaromatic inhibitors are probed within the scaffolding of the crystal lattice of Phe-131-->Val carbonic anhydrase II. The degree and pattern of fluorine substitution on the inhibitor benzyl ring modulate its size, shape, and electronic character. In turn, these properties affect the geometry of intermolecular interactions between the fluoroaromatic rings of two different inhibitor molecules bound in the crystal lattice, as determined by X-ray crystallography. Depending on the degree and pattern of fluorine substitution, we observe a face-to-face (aromatic-aromatic) interaction, an atom-to-face (carbonyl-aromatic) interaction, or no interaction at all. These interaction geometries are analyzed with regard to van der Waals, electrostatic, and possible charge-transfer effects. For the aromatic-aromatic interactions investigated in this study, with aromatic ring quadrupoles specifically "tuned" by the degree and pattern of fluorination, the structural results suggest that London forces and charge-transfer complexation dominate over weakly polar electrostatic interactions in the association of aromatic ring pairs.  相似文献   

2.
3.
We investigate the probable proton-transfer pathways from the surface of human carbonic anhydrase II into the active site cavity through His-64 that has been widely implicated as a key residue along the proton-transfer path. A recursive analysis of hydrogen-bonded clusters in the static crystallographic structure shows that there is no complete path through His-64 in either of its experimentally detected conformations. Side chain conformational fluctuation of His-64 from its outward conformation toward the active site is found to provide a crucial dynamic connectivity needed to complete the path coupled to local reorganization of the protein structure and hydration. The energy and free energy barriers along the detected pathway have been estimated to derive the mechanism of His-64 rotation toward the active site. We also investigate a dynamical connectivity map that highlights networks of disordered water molecules that may promote a direct (and probably transient) access of the solvent to the active site. Our studies reveal how such solvent access channels may be related to the putative proton shuttle mediated by His-64. The paths thus identified can be potentially used as reaction coordinates for further studies on the molecular mechanism of enzyme action.  相似文献   

4.
Carbonic anhydrase II (CA II) is an important enzyme complex with Zn2+, which is involved in many physiological and pathological processes, such as calcification, glaucoma and tumorigenicity. In order to search for novel inhibitors of CA II, inhibition assay of carbonic anhydrase II was performed, by which seven natural phenolic compounds, including four phenolics (grifolin, 4-O-methyl-grifolic acid, grifolic acid, and isovanillic acid) and three flavones (eriodictyol, quercetin and puerin A), showed inhibitory activities against CA II with IC50s in the range of 6.37–71.73 μmol/L. Grifolic acid is the most active one with IC50 of 6.37 μmol/L. These seven phenolic compounds were proved to be novel natural carbonic anhydrase II inhibitors, which were obtained in flexible docking study with GOLD 3.0 software. Results indicated that the aliphatic chain and polar groups of hydroxyl and carboxyl are important to their inhibitory activities, providing a new insight into study on CA II potent inhibitors. Authors with the equal contribution Supported by the National Natural Science Foundation of China (Grant No. 30725048) and the Foundation of Chinese Academy of Sciences (West Light Program).  相似文献   

5.
Carbonic anhydrases (CAs) are enzymes whose endogenous reaction is the reversible hydration of CO(2) to give HCO(3)(-) and a proton. CA are also known to exhibit weak and promiscuous esterase activity toward activated esters. Here, we report a series of findings obtained with a set of CA inhibitors that showed quite unexpectedly that the compounds were both inhibitors of CO(2) hydration and substrates for the esterase activity of CA. The compounds comprised a monosaccharide core with the C-6 primary hydroxyl group derivatized as a sulfamate (for CA recognition). The remaining four sugar hydroxyl groups were acylated. Using protein X-ray crystallography, the crystal structures of human CA II in complex with four of the sulfamate inhibitors were obtained. As expected, the four structures displayed the canonical CA protein-sulfamate interactions. Unexpectedly, a free hydroxyl group was observed at the anomeric center (C-1) rather than the parent C-1 acyl group. In addition, this hydroxyl group is observed axial to the carbohydrate ring while in the parent structure it is equatorial. A mechanism is proposed that accounts for this inversion of stereochemistry. For three of the inhibitors, the acyl groups at C-2 or at C-2 and C-3 were also absent with hydroxyl groups observed in their place and retention of stereochemistry. With the use of electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry (ESI-FTICR-MS), we observed directly the sequential loss of all four acyl groups from one of the carbohydrate-based sulfamates. For this compound, the inhibitor and substrate binding mode were further analyzed using free energy calculations. These calculations suggested that the parent compound binds almost exclusively as a substrate. To conclude, we have demonstrated that acylated carbohydrate-based sulfamates are simultaneously inhibitor and substrate of human CA II. Our results suggest that, initially, the substrate binding mode dominates, but following hydrolysis, the ligand can also bind as a pure inhibitor thereby competing with the substrate binding mode.  相似文献   

6.
Production of active human carbonic anhydrase II in E. coli   总被引:1,自引:0,他引:1  
cDNA encoding human carbonic anhydrase II has been isolated and its nucleotide sequence determined. Expression of the isolated carbonic anhydrase gene in Escherichia coli from a plasmid containing the tac promoter yielded an active enzyme at a level of about 1% of total protein.  相似文献   

7.
Several receptors for human carbonic anhydrase II (HCAII) have been prepared by covalently attaching benzenesulfonamide carboxylates via aliphatic aminocarboxylic acid spacers of variable length to the side chain of a lysine residue in a designed 42 residue helix-loop-helix motif. The sulfonamide group binds to the active site zinc ion of human carbonic anhydrase II located in a 15 A deep cleft. The dissociation constants of the receptor-HCAII complexes were found to be in the range from low micromolar to better than 20 nM, with the lowest affinities found for spacers with less than five methylene groups and the highest affinity found for the spacer with seven methylene groups. The results suggest that the binding is a cooperative event in which both the sulfonamide residue and the helix-loop-helix motif contribute to the overall affinity.  相似文献   

8.
Cryptophanes represent an exciting class of xenon-encapsulating molecules that can be exploited as probes for nuclear magnetic resonance imaging. The 1.70 A resolution crystal structure of a cryptophane-derivatized benezenesulfonamide complexed with human carbonic anhydrase II shows how an encapsulated xenon atom can be directed to a specific biological target. The crystal structure confirms binding measurements indicating that the cryptophane cage does not strongly interact with the surface of the protein, which may enhance the sensitivity of 129Xe NMR spectroscopic measurements in solution.  相似文献   

9.
[formula: see text] A tight-binding, hydrophobic inhibitor of carbonic anhydrase II has been masked with a water-solubilizing, photolabile group derived from o-nitrophenylglycine. This caged inhibitor represents our first effort at the site-specific delivery of prodrugs that can be activated by light. Via this approach, we have begun to address the problems of water insolubility and systemic side effects on administration of tight-binding inhibitors of carbonic anhydrase.  相似文献   

10.
This paper describes the development of a new bivalent system comprising synthetic dimers of carbonic anhydrase linked chemically through thiol groups of cysteine residues introduced by site-directed mutagenesis. These compounds serve as models with which to study the interaction of bivalent proteins with ligands presented at the surface of mixed self-assembled monolayers (SAMs). Monovalent carbonic anhydrase (CA) binds to benzenesulfonamide ligands presented on the surface of the SAM with K(d)(surf) = 89 nM. The synthetic bivalent proteins--inspired by the structure of immunoglobulins--bind bivalently to the sulfonamide-functionalized SAMs with low nanomolar avidities (K(d)(avidity,surf) = 1-3 nM); this difference represents a ~50-fold enhancement of bivalent over monovalent association. The paper describes dimers of CA having (i) different lengths of the covalent linker that joined the two proteins and (ii) different points of attachment of the linker to the protein (either near the active site (C133) or distal to the active site (C185)). Comparison of the thermodynamics of their interactions with SAMs presenting arylsulfonamide groups demonstrated that varying the length of the linker between the molecules of CA had virtually no effect on the rate of association, or on the avidity of these dimers with ligand-presenting surfaces. Varying the point of attachment of the linker between monomeric CA's also had almost no effect on the avidity of the dimers, although changing the point of attachment affected the rates of binding and unbinding. These observations indicate that the avidities of these bivalent proteins, and by inference the avidities of structurally similar bivalent proteins such as IgG, are unexpectedly insensitive to the structure of the linker connecting them.  相似文献   

11.
12.
A method for carbonic anhydrase II (CA II) absolute quantification in human serum is presented. This method is based on high-performance liquid chromatography (HPLC)-Chip microfluidic device incorporating a nanoelectrospray source interfaced to a triple quadrupole mass spectrometer. The fraction containing CA II was isolated by preparative reversed-phase HPLC, and peptides obtained from the tryptic digest of the protein mixture were separated by the HPLC-Chip system. The multiple-reaction monitoring acquisition mode of a selected suitable CA II peptide and peptide internal standard allowed the selective and sensitive determination of a CA II. Absolute recovery of the method was 52 ± 12%, while analytical recovery was 81 ± 10%. For the eight samples analyzed, the matrix effect was found to be only −14 ± 6%. A comparison among three regression lines type which were obtained by external calibration, matrix-matched calibration, and standard addition method, respectively, demonstrated that the first one is adequate in obtaining good accuracy and precision. Method quantification limit for CA II in serum was estimated to be 2 fmol/mL. CA II mean concentration in sera from eight healthy subjects was found to be 56 pmol/mL (relative standard deviation 24%).  相似文献   

13.
In human carbonic anhydrase II (HCA II), the mutation of position 64 from histidine to alanine (H64A) disrupts the rate limiting proton transfer (PT) event, resulting in a reduction of the catalytic activity of the enzyme as compared to the wild-type. Potential of mean force (PMF) calculations utilizing the multistate empirical valence bond (MS-EVB) methodology for H64A HCA II yields a PT free energy barrier significantly higher than that found in the wild-type enzyme. This high barrier, determined in the absence of exogenous buffer and assuming no additional ionizable residues in the PT pathway, indicates the likelihood of alternate enzyme pathways that utilize either ionizable enzyme residues (self-rescue) and/or exogenous buffers (chemical rescue). It has been shown experimentally that the catalytic activity of H64A HCA II can be chemically rescued to near wild-type levels by the addition of the exogenous buffer 4-methylimidazole (4MI). Crystallographic studies have identified two 4MI binding sites, yet site-specific mutations intended to disrupt 4MI binding have demonstrated these sites to be nonproductive. In the present work, MS-EVB simulations show that binding of 4MI near Thr199 in the H64A HCA II mutant, a binding site determined by NMR spectroscopy, results in a viable chemical rescue pathway. Additional viable rescue pathways are also identified where 4MI acts as a proton transport intermediary from the active site to ionizable residues on the rim of the active site, revealing a probable mode of action for the chemical rescue pathway.  相似文献   

14.
The ability of Gold software to predict the binding disposition of carbonic anhydrase (CA) inhibitors was evaluated using CA II as a case study. The best procedure was subsequently used for docking almost 300 CA II ligands, and the best poses were used as an alignment tool for the development of a 3D quantitative structure-activity relationship (QSAR) study. Evaluation of the resulting 3D-QSAR model allowed us to indicate the ligand properties and residues important for CA II inhibition. Since CAs are an important target involved in many pathologies such as glaucoma, obesity, and tumors, the results obtained could accurately predict the binding affinity of newly designed CA II inhibitors. Furthermore, it is reasonable that this strategy could be profitably used also for the investigation of other CAs.  相似文献   

15.
16.
[figure: see text] Linear free energy relationships between binding affinity and hydrophobicity for a library of fluoroaromatic inhibitors of F131V carbonic anhydrase II (CA) implicate three modes of interaction. X-ray crystal structures suggest that F131 interacts with fluoroaromatic inhibitors, while P202, on the opposite side of the active site cleft, serves as the site of the hydrophobic contact in the case of the F131V mutant. 2-Fluorinated compounds bind more tightly, perhaps due to the field effect of the nearby fluorine on the acidity of the amide proton.  相似文献   

17.
[formula: see text] Complexes formed between fluorobenzene and N-methylformamide or benzene have been used as models of the interaction of fluoroaromatic drugs with carbonic anhydrase II. These structures have been investigated via ab initio and density functional methods, including HF, B3LYP, and MP2 procedures. The results of the calculations are consistent with the hypothesis, suggested originally by experimental X-ray crystal structures of the drug-receptor complexes, that favorable fluorine-hydrogen interactions affect binding affinity.  相似文献   

18.
A series of hydroxybenzoic acid derivatives have shown inhibitory activity against carbonic anhydrase (CA). X-ray crystallography shows that these molecules inhibit not by binding the active site metal ion but by strong hydrogen bonding to the metal-bound water nucleophile. The binding mode observed for these molecules is distinct when compared to other non-metal-binding CA inhibitors.  相似文献   

19.
Back-scattering interferometry (BSI) is a label-free, free-solution, small-volume technique used for characterizing binding interactions, which is also relevant to a growing number of biosensing applications including drug discovery. Here, we use BSI to characterize the interaction of carbonic anhydrase enzyme II with five well-known carbonic anhydrase enzyme II inhibitors (± sulpiride, sulfanilamide, benzene sulfonamide, dansylamide, and acetazolamide) in the presence of DMSO. Dissociation constants calculated for each interaction were consistent with literature values previously obtained using surface plasmon resonance and fluorescence-based competition assays. Results demonstrate the potential of BSI as a drug-screening tool which is fully compatible with DMSO and does not require immobilization or labeling, therefore allowing binding interactions to be characterized in the native state. BSI has the potential for reducing labor costs, sample consumption, and assay time while providing enhanced reliability over existing techniques.  相似文献   

20.
A 3D QSAR selectivity analysis of carbonic anhydrase (CA) inhibitors using a data set of 87 CA inhibitors is reported. After ligand minimization in the binding pockets of CA I, CA II, and CA IV isoforms, selectivity CoMFA and CoMSIA 3D QSAR models have been derived by taking the affinity differences (DeltapKi) with respect to two CA isozymes as independent variables. Evaluation of the developed 3D QSAR selectivity models allows us to determine amino acids in the respective CA isozymes that possibly play a crucial role for selective inhibition of these isozymes. We further combined the ligand-based 3D QSAR models with the docking program AUTODOCK in order to screen for novel CA inhibitors. Correct binding modes are predicted for various CA inhibitors with respect to known crystal structures. Furthermore, in combination with the developed 3D QSAR models we could successfully estimate the affinity of CA inhibitors even in cases where the applied scoring function failed. This novel strategy to combine AUTODOCK poses with CoMFA/CoMSIA 3D QSAR models can be used as a guideline to assess the relevance of generated binding modes and to accurately predict the binding affinity of newly designed CA inhibitors that could play a crucial role in the treatment of pathologies such as tumors, obesity, or glaucoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号