首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
In this research the fluid dynamics characteristics of a stellar turbulent jet flow is studied numerically and the results of three dimensional jet issued from a stellar nozzle are presented. A numerical method based on control volume approach with collocated grid arrangement is employed. The turbulent stresses are approximated using kε and kω models with four different inlet conditions. The velocity field is presented and the rate of decay at jet centerline is noted. Special attention is drawn on the influence of corner angle and number of wings on mixing in stellar cross section jets. Stellar jets with three; four and five wings and 15–65° corner angles are studied. Also the effect of Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the stellar jet is studied. The Numerical results show that the jet entrains more with corner angle 65° and five wings number. The jet is close to a converged state for high Reynolds numbers. Also the influence of the inflow conditions on the jet characteristics is so strong.  相似文献   

2.
 The paper presents an experimental investigation of turbulent jets issuing from rectangular nozzles. Nozzles with aspect ratios between 3 and 10 were used. Eight different initial conditions were studied. The following jet parameters were measured and evaluated: mean velocity components, jet boundaries, jet momentum, jet entrainment, turbulence intensities and Reynolds stresses. A DISA 55M thermoanemometer and a data acquisition system BE256 were used. The influence of the initial conditions on the similarity of the flow was determined with respect to the mean axial velocity, turbulence intensity and the Reynolds stresses. A significant influence of the initial conditions on the flow structure was observed. The possibility for jet control is discussed and suggestions are given about the need to investigate different parameters. Received: 25 November 1996/Accepted: 30 October 1997  相似文献   

3.
4.
This paper investigates the impact of the inflow conditions on simulations of a round jet discharging from a wall into a large space. The fluid dynamic characteristics of a round jet are studied numerically. A numerical method based on the control volume approach with collocated grid arrangement is employed. The k-e{k-\varepsilon} model is utilized to approximate turbulent stresses by considering six different inlet conditions. The velocity field is presented, and the rate of decay at the jet centerline is determined. The results showed that inflow conditions had a strong influence on the jet characteristics. This paper also investigates both sharp-edged and contoured nozzles. The effects of velocity, turbulence intensity, turbulence kinetic energy, and turbulence dissipation rate on flow field characteristics are examined. Results showed that the present simulations in both types of nozzles are in good agreement with experiments when considering the appropriate inflow conditions.  相似文献   

5.
The design and operational characteristics of a 12-sensor hot wire probe for three-dimensional velocity–vorticity measurements in turbulent flow fields is described and discussed. The performance of the probe is investigated in comparison with X-sensor probe measurements in the near field of a rectangular turbulent jet with aspect ratio 6. Measurements have been conducted at Reynolds number Re D = 21,000 at nozzle distances of x/D = 1, 3, 6 and 11, where D is the width of the nozzle. The results obtained with the 12-sensor probe compare well to the results of the X-sensor probe. Distributions of mean and fluctuating velocity–vorticity fields are presented and discussed. Among the results the most prominent is the experimental confirmation of the high levels of fluctuating vorticity in the shear layers.  相似文献   

6.
The paper presents numerical investigations of square jets in a wide range of Reynolds numbers with varying inlet turbulence characteristics. The research focuses on flow characteristics depending on inflow turbulent length/time scales and excitation frequencies in case of excited jets. It is found that the parameters of inlet turbulence affect the solutions qualitatively when the Reynolds number is sufficiently low. In these cases the impact of varying the turbulent time scale is considerably larger than changing the turbulent length scale. It was also observed that at sufficiently high Reynolds numbers the jets become quite independent of the inlet turbulence characteristics. This confirms findings of Xu et al. (Phys. Fluids, 2013) concerning weak/strong dependence of the jet evolution on inflow conditions. In case of excited jets the excitation frequencies play an important role and influence the jet behaviour most strongly at lower values of the Reynolds number. For some forcing frequencies a bifurcation occurs at sufficiently large forcing amplitudes. This phenomenon turned out to be independent of the assumed length and time scales of the turbulent fluctuations, both in terms of robustness as well as amplitude.  相似文献   

7.
Self-sustained oscillatory phenomena in confined flow may occur when a turbulent plane jet is discharging into a rectangular cavity. An experimental set-up was developed and the flow analysis has been made using mainly hot-wire measurements, which were complemented by visualisation data. Previous studies confirmed that periodic oscillations may occur, depending on the location of the jet exit nozzle inside the cavity, and also the distance between the side-walls. The present study deals with the symmetrical interaction between a turbulent plane jet and a rectangular cavity and the influence of the geometrical characteristics of the cavity on the oscillatory motion. The size and aspect ratio of the cavity were varied together with the jet width compared to that of the cavity. The study is carried out both numerically and experimentally. The numerical method solves the unsteady Reynolds averaged Navier–Stokes equations (URANS) together with the continuity equation for an incompressible fluid. The closure of the flow equations system is achieved using a two-scale energy-flux model at high Reynolds number in the core flow coupled with a wall function treatment in the vicinity of the wall boundaries. The fundamental frequency of the oscillatory flow was found to be practically independent of the cavity length. Moreover, the oscillations are attenuated as the cavity width increases, until they disappear for a critical value of the cavity width. Contour maps of the instantaneous flow field are drawn to show the flow pattern evolution at the main phases of oscillation. They are given for several aspect ratios of the cavity, keeping constant values for the cavity width and the jet thickness. The proposed approach may help to investigate further the oscillation mechanisms and the entrainment process occurring in pressure driven jet–cavity interactions.  相似文献   

8.
Direct numerical simulation(DNS) of spatially developing round turbulent jet flow with Reynolds number 4,700 was carried out. Over 20 million grid points were used in this simulation. Fully compressible three-dimensional Navier–Stokes equations were solved. High order explicit spatial difference schemes and Runge–Kutta time integration scheme were used to calculate derivatives and time marching, respectively. Non-reflecting boundary conditions and exit zone techniques were adopted. Some refined computational grids were used in order to capture the smallest turbulent structures near the centerline of the jet. Low level disturbance were imposed on the jet inflow velocity to trigger the developing of turbulence. Turbulent statistics such as mean velocity, Reynolds stresses, third order velocity moments were obtained and compared with experimental data. One-dimensional velocity autospectra was also calculated. The inertial region where the spectra decays according to the k − 5/3 was observed. The quantitative profiles of mean velocity and all of the third order velocity moments which were difficult to measure via experimental techniques were presented here in detail. The jet flow was proven to be close to fully self-similar around 19 jet diameters downstream of jet exit. The statistic data and revealed flow feature obtained in this paper can provide valuable reference for round turbulent jet research.  相似文献   

9.
The turbulent properties of the fiber suspension in a turbulent round jet are numerically simulated and visualized, and some of the results are compared with the experimental data. The effects of the Reynolds number, fiber volume fraction, and aspect ratio are analyzed. The results show that the fiber injection in the flow has a delay effect on the streamwise velocity decay along the jet axis, and such an effect becomes more obvious with the increases in the fiber volume fraction and aspect ratio and the decrease in the Reynolds number. The flow with fibers shows an increase in the streamwise velocity along the radial direction, and the increase magnitude is directly proportional to the fiber volume fraction and aspect ratio and inversely proportional to the Reynolds number. The presence of fibers makes the turbulent kinetic energy and Reynolds stress increase, and the extent increases with the fiber volume fraction, Reynolds number, and fiber aspect ratio.  相似文献   

10.
The effect of sidewalls on rectangular jets   总被引:1,自引:0,他引:1  
An experimental study is presented regarding the influence of sidewalls on the turbulent free jet flow issuing from a smoothly contracting rectangular nozzle of aspect ratio 15. “Sidewalls” are two parallel plates, flush with each of the slots’ short sides, practically establishing bounding walls extending the nozzle sidewalls in the downstream direction. Measurements of the streamwise and lateral velocity mean and turbulent characteristics have been accomplished, with an x-sensor hot wire anemometer, up to an axial distance of 35 nozzle widths, for jets with identical inlet conditions with and without sidewalls. Centreline measurements for both configurations have been collected for three Reynolds numbers, ReD = 10,000, 20,000 and 30,000. For ReD = 20,000 measurements in the transverse direction were collected at 13 different downstream locations in the range, x = 0–35 nozzle widths, and in the spanwise direction at three different downstream locations, x = 2, 6 and 25 nozzle widths.Results indicate that, the two jet configurations (with and without sidewalls) produce statistically different flow fields. Sidewalls do not lead to the production of a 2D flow field as undulations in the spanwise mean velocity distribution indicate. They do increase the two-dimensionality of the jet increasing the longevity of 2D spanwise rollers structures formed in the initial stages of entrainment, which are responsible for the convection of longitudinal momentum towards the outer field, establishing larger streamwise mean velocities at the jet edges. In the near field, up to 25 nozzle widths, lower outward lateral velocities in the presence of the sidewalls are held responsible for the decrease of turbulent terms including rms of velocity fluctuations and Reynolds stresses. Skewness factors increase monotonically across the shear layers from negative values to positive forming sharp peaks at the outer edges of the jet, illustrative of the presence of well defined 2D roller structures in the jet with sidewalls.  相似文献   

11.
Two‐dimensional laminar incompressible impinging slot‐jet is simulated numerically to gain insight into flow characteristics.Computations are done for vertically downward‐directed slot‐jets impinging on a plate at the bottom and confined by a parallel surface on top. The behaviour of the jet with respect to aspect ratio (AR) and Reynolds number (Re) are described in detail. The computed flow patterns for various AR (2–5) and for a range of jet‐exit Reynolds numbers (100–500) are analysed to understand the flow characteristics. The transient development of the flow is also simulated for AR = 4 and Re = 300. It is found that the reattachment length is dependent on both AR and Reynolds number for the range considered. The correlation for reattachment length is suggested. The maximum resultant velocity Vrmax and its trajectory is reported. A detailed study of horizontal velocity profile at different downstream locations is reported. It is found that the effect of Reynolds number and AR is significant to the bottom wall vorticity in the impingement and wall jet regions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Turbulent structure during transition to self-similarity in a round jet   总被引:1,自引:0,他引:1  
 The developing turbulent region of a round jet was investigated using an improved implementation of digital particle image velocimetry (DPIV). The two-dimensional flow field in planes normal and parallel to the axial velocity was measured at locations between 15 and 30 diameters downstream, for two Reynolds numbers of 5500 and 16,000. The study consisted of instantaneous snapshots of the velocity and vorticity fields as well as measurements of velocity correlations up to third order. In this regime, the Reynolds number had a significant effect on both the instantaneous flow structure and the profiles of mean velocity across the jet. Coherent streamwise structures were present in the jet core for the lower Reynolds number. Additional structures whose evolution was governed by time scales two orders of magnitude larger than the convective scale inside the jet were observed in the entrainment field. The velocity correlations provided further support for the validity of DPIV turbulence measurements. The data was consistent with the equations of motion and momentum was conserved. DPIV measurements of turbulent kinetic energy components agreed with the hot-wire measurements of previous studies. Received: 27 November 1996/Accepted: 14 July 1997  相似文献   

13.
The paper presents results of a LES based numerical simulation of the turbulent jet-in-cross-flow (JICF) flowfield, with Reynolds number based on cross-flow velocity and jet diameter Re = 2400 and jet-to-cross-flow velocity ratio of R = 3.3. The JICF flow case has been investigated in great detail, involving conduction of two independent precursor simulations, prior to the main JICF simulation, as the considered case has turbulent inflow conditions on both jet and cross-stream side. The LES results are directly compared to pointwise Laser Doppler Anemometry (LDA) measurements, showing a very good agreement on the level of various statistical quantities in all flow regions but the immediate jet-to-cross-flow exhaustion zone. Several LES computations involving grids of up to 15 million grid points have been conducted, showing no improvement in the agreement between numerical results and measurements, possibly indicating a LDA measurement problem in this particular region.  相似文献   

14.
This paper describes a vortex detection algorithm used to expose and statistically characterize the coherent flow patterns observable in the velocity vector fields measured by particle image velocimetry in the impingement region of air curtains. The philosophy and the architecture of this algorithm are presented. Its strengths and weaknesses are discussed. The results of a parametrical analysis performed to assess the variability of the response of our algorithm to the three user-specified parameters in our eduction scheme are reviewed. The technique is illustrated in the case of a plane turbulent impinging twin-jet with an opening ratio of 10. The corresponding jet Reynolds number, based on the initial mean flow velocity U 0 and the jet width e, is 14,000. The results of a statistical analysis of the size, shape, spatial distribution and energetic content of the coherent eddy structures detected in the impingement region of this test flow are provided. Although many questions remain open, new insights into the way these structures might form, organise and evolve are given. Relevant results provide an original picture of the plane turbulent impinging jet.  相似文献   

15.
Details of the turbulent flow in a 1:8 aspect ratio rectangular duct at a Reynolds number of approximately 5800 were investigated both numerically and experimentally. The three-dimensional mean velocity field and the normal stresses were measured at a position 50 hydraulic diameters downstream from the inlet using laser doppler velocimetry (LDV). Numerical simulations were carried out for the same flow case assuming fully developed conditions by imposing cyclic boundary conditions in the main flow direction. The numerical approach was based on the finite volume technique with a non-staggered grid arrangement and the SIMPLEC algorithm. Results have been obtained with a linear and a non-linear (Speziale) k–ε model, combined with the Lam–Bremhorst damping functions for low Reynolds numbers. The secondary flow patterns, as well as the magnitude of the main flow and overall parameters predicted by the non-linear k–ε model, show good agreement with the experimental results. However, the simulations provide less anisotropy in the normal stresses than the measurements. Also, the magnitudes of the secondary velocities close to the duct corners are underestimated. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Direct or large eddy simulation of a turbulent flow field is strongly influenced by its initial or inflow boundary condition. This paper presents a new stochastic approach to generate an artificial turbulent velocity field for initial or inflow boundary condition based on digital filtering. Each velocity component of the artificial turbulent velocity field is generated by linear combination of individual uncorrelated random fields. These uncorrelated random fields are obtained by filtering random white‐noise fields. Using common elements in these linear combinations results in multi‐correlation among different velocity components. The generated velocity field reproduces locally desired Reynolds stress components and integral length scales including cross‐integral length scales. The method appears to be simple, flexible and more accurate in comparison with previously developed methods. The accuracy and performance of the method are demonstrated by numerical simulation of a homogeneous turbulent shear flow with high and low shear rates. To assess the accuracy and performance of the method, simulation results are compared with a reference simulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Experimental results on the near field development of a turbulent rectangular wall jet with aspect ratio 10 that issues from a sharp-edged orifice at Reh  23,000 are presented and discussed, in comparison with results obtained in a free jet with identical initial conditions. Hot wire X-probe measurements on cross plane grids provide information on the 3D characteristics of the flow field. This work, besides presenting the main features of the jet, focuses on the effect of vorticity on the development of specific flow field characteristics. Mean vorticity components were estimated by interpolation and derivation from the mean and turbulent velocity measurements and the symmetries of the flow field were imposed by suitable averaging. Several terms of the axial vorticity equation are presented and discussed to uncover some complex flow physics, related e.g. to axis switching and the formation of a dumbbell shape of the jet outline, in the early stages of development.  相似文献   

18.
Direct numerical simulation (DNS) has been performed to study the channel flow over a backward‐facing step at a Reynolds number Reb=5600 based on the step height h and the inflow bulk velocity Ub. A dynamic method has been used in order to generate realistic turbulent inflow conditions. The results upstream of the step compared well with the fully developed channel flow. Downstream of the step our results show excellent agreement with experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this work is to investigate the capabilities of a turbulent inflow method. The application selected for this study is the high aspect ratio jet. The complexities associated to the numerical modelling of a high aspect ratio jet are embedded in its physical complexity. Consequently, the numerical modelling does not only require a high mesh resolution, but furthermore it requires a careful mesh construction, inflow conditions and subgrid-scale modelling to make an accurate computation of the unsteady flow phenomena. The results indicate that increased grid resolution and enhanced turbulence modelling reduce the effect of the imposed flow fluctuations. It is concluded that for a high aspect ratio free-jet turbulent inflow conditions are effective if the mesh resolution is insufficient to trigger shear-layer instabilities. Applied with sufficient mesh resolution the onset of vortex motions will occur in the shear layer, hence there is limited inflow sensitivity.  相似文献   

20.
An experimental study was conducted to investigate the effect of nozzle geometry on the mixing characteristics and turbulent transport phenomena in turbulent jets. The nozzle geometry examined were round, square, cross, eight-corner star, six-lobe daisy, equilateral triangle as well as ellipse and rectangle each with aspect ratio of 2. The jets were produced from sharp linear contoured nozzles which may be considered intermediate to the more widely studied smooth contraction and orifice nozzles. A high resolution particle image velocimetry was used to conduct detailed velocity measurements in the near and intermediate regions. It was observed that the lengths of the potential cores and the growth rates of turbulence intensities on the jet centerline are comparable with those of the orifice jets. The results indicate that the decay and spreading rates are lower than reported for orifice jets but higher than results for smooth contoured jets. The jets issuing from the elliptic and rectangular nozzles have the best mixing performance while the least effective mixing was observed in the star jet. The distributions of the Reynolds stresses and turbulent diffusion clearly showed that turbulent transport phenomena are quite sensitive to nozzle geometry. Due to the specific shape of triangular and daisy jets, the profiles of mean velocity and turbulent quantities are close to each other in their minor and major planes while in the elliptic and rectangular jets are considerably different. They also exhibit more isotropic behavior compared to the elliptic and rectangular jets. In spite of significant effects of nozzle geometry on mean velocity and turbulent quantities, the integral length scales are independent of changes in nozzle geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号