首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the context of cooperative games with transferable utility Hamiache (Int J Game Theory 30:279–289, 2001) utilized continuity, the inessential game property and associated consistency to axiomatize the well-known Shapley value (Ann Math Stud 28:307–317, 1953). The question then arises: “Do there exist linear, symmetric values other than the Shapley value that satisfy associated consistency?”. In this Note we give an affirmative answer to this question by showing that a linear, symmetric value satisfies associated consistency if and only if it is a linear combination of the Shapley value and the equal-division solution. In addition, we offer an explicit formula for generating all such solutions and show how the structure of the null space of the Shapley value contributes to its unique position in Hamiache’s result.  相似文献   

2.
This note provides a new approach to a result of Foregger [T.H. Foregger, On the relative extrema of a linear combination of elementary symmetric functions, Linear Multilinear Algebra 20 (1987) pp. 377–385] and related earlier results by Keilson [J. Keilson, A theorem on optimum allocation for a class of symmetric multilinear return functions, J. Math. Anal. Appl. 15 (1966), pp. 269–272] and Eberlein [P.J. Eberlein, Remarks on the van der Waerden conjecture, II, Linear Algebra Appl. 2 (1969), pp. 311–320]. Using quite different techniques, we prove a more general result from which the others follow easily. Finally, we argue that the proof in [Foregger, 1987] is flawed.  相似文献   

3.
In this paper, we present a preconditioned variant of the generalized successive overrelaxation (GSOR) iterative method for solving a broad class of complex symmetric linear systems. We study conditions under which the spectral radius of the iteration matrix of the preconditioned GSOR method is smaller than that of the GSOR method and determine the optimal values of iteration parameters. Numerical experiments are given to verify the validity of the presented theoretical results and the effectiveness of the preconditioned GSOR method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
线性流形上对称正交反对称矩阵反问题的最小二乘解   总被引:1,自引:0,他引:1  
设P是n阶对称正交矩阵,如果n阶矩阵A满足AT=A和(PA)T=-PA,则称A为对称正交反对称矩阵,所有n阶对称正交反对称矩阵的全体记为SARnp.令S={A∈SARnp f(A)=‖AX-B‖=m in,X,B〗∈Rn×m本文讨论了下面两个问题问题Ⅰ给定C∈Rn×p,D∈Rp×p,求A∈S使得CTAC=D问题Ⅱ已知A~∈Rn×n,求A∧∈SE使得‖A~-A∧‖=m inA∈SE‖A~-A‖其中SE是问题Ⅰ的解集合.文中给出了问题Ⅰ有解的充要条件及其通解表达式.进而,指出了集合SE非空时,问题Ⅱ存在唯一解,并给出了解的表达式,从而得到了求解A∧的数值算法.  相似文献   

5.
《Optimization》2012,61(7):1577-1591
We present an infeasible interior-point algorithm for symmetric linear complementarity problem based on modified Nesterov–Todd directions by using Euclidean Jordan algebras. The algorithm decreases the duality gap and the feasibility residual at the same rate. In this algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem. Each main iteration of the algorithm consists of a feasibility step and a number of centring steps. The starting point in the first iteration is strictly feasible for a perturbed problem. The feasibility steps lead to a strictly feasible iterate for the next perturbed problem. By using centring steps for the new perturbed problem, a strictly feasible iterate is obtained to be close to the central path of the new perturbed problem. Furthermore, giving a complexity analysis of the algorithm, we derive the currently best-known iteration bound for infeasible interior-point methods.  相似文献   

6.
For complex symmetric linear systems, Axelsson et al. (2014) proposed the C-to-R method. In this paper, by further studying the C-to-R method with W and T being symmetric positive semidefinite, the optimal iteration parameter for the C-to-R method αopt=222 is obtained and the C-to-R method is optimized. Furthermore, based on the optimized C-to-R method, we further propose an optimized preconditioner. Eigenvalue properties of the optimized preconditioned matrix are analyzed, which show that all the eigenvalues of the preconditioned matrix are located in tighter interval. Numerical results are presented, not only confirm the validity of the theoretical analysis, but also demonstrate the feasibility and effectiveness of the proposed optimized C-to-R method.  相似文献   

7.
本文在Bai的基础上提出改进的斜正规分裂(MSNS)和斜尺度化分裂(MSSS)迭代法,用以求解一类应用广泛的复对称线性系统,并证实MSNS和MSSS迭代法是无条件收敛的.通过利用一些Krylov子空间方法,本文给出相对应的非精确版本的MSNS(MSSS)方法.数值实验说明了所给方法的有效性.  相似文献   

8.
Let y = y(x) be a function defined by a continued fraction. A lower bound for |Λ| = |β 1 y 1 + β 2 y 2 + α| is given, where y 1 = y(x 1), y 2 = y(x 2), x 1 and x 2 are positive integers, α, β 1 and β 2 are algebraic irrational numbers.  相似文献   

9.
A class of modified block SSOR preconditioners is presented for solving symmetric positive definite systems of linear equations, which arise in the hierarchical basis finite element discretizations of the second order self‐adjoint elliptic boundary value problems. This class of methods is strongly related to two level methods, standard multigrid methods, and Jacobi‐like hierarchical basis methods. The optimal relaxation factors and optimal condition numbers are estimated in detail. Theoretical analyses show that these methods are very robust, and especially well suited to difficult problems with rough solutions, discretized using highly nonuniform, adaptively refined meshes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
This paper is concerned with several variants of the Hermitian and skew‐Hermitian splitting iteration method to solve a class of complex symmetric linear systems. Theoretical analysis shows that several Hermitian and skew‐Hermitian splitting based iteration methods are unconditionally convergent. Numerical experiments from an n‐degree‐of‐freedom linear system are reported to illustrate the efficiency of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Motivated by the theory of self‐duality that provides a variational formulation and resolution for non‐self‐adjoint partial differential equations (Ann. Inst. Henri Poincaré (C) Anal Non Linéaire 2007; 24 :171–205; Selfdual Partial Differential Systems and Their Variational Principles. Springer: New York, 2008), we propose new templates for solving large non‐symmetric linear systems. The method consists of combining a new scheme that simultaneously preconditions and symmetrizes the problem, with various well‐known iterative methods for solving linear and symmetric problems. The approach seems to be efficient when dealing with certain ill‐conditioned, and highly non‐symmetric systems. The numerical and theoretical results are provided to show the efficiency of our approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Modulus‐based splitting, as well as multisplitting iteration methods, for linear complementarity problems are developed by Zhong‐Zhi Bai. In related papers (see Bai, Z.‐Z., Zhang, L.‐L.: Modulus‐Based Synchronous Multisplitting Iteration Methods for Linear Complementarity Problems. Numerical Linear Algebra with Applications 20 (2013) 425–439, and the references cited therein), the problem of convergence for two‐parameter relaxation methods (accelerated overrelaxation‐type methods) is analyzed under the assumption that one parameter is greater than the other. Here, we will show how we can avoid this assumption and, consequently, improve the convergence area. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
In this article we develop a family of three explicit symmetric linear four-step methods. The new methods, with nullified phase-lag, are optimized for the efficient solution of the Schrödinger equation and related oscillatory problems. We perform an analysis of the local truncation error of the methods for the general case and for the special case of the Schrödinger equation, where we show the decrease of the maximum power of the energy in relation to the corresponding classical methods. We also perform a periodicity analysis, where we find that there is a direct relationship between the periodicity intervals of the methods and their local truncation errors. In addition we determine their periodicity regions. We finally compare the new methods to the corresponding classical ones and other known methods from the literature, where we show the high efficiency of the new methods.  相似文献   

16.
We prove that ?‐linear GMRES for solving a class of ?‐linear systems is faster than GMRES applied to the related ?‐linear systems in terms of matrix–vector products. Numerical examples are given to demonstrate the theoretical result. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
We give a proof of the realization theorem of N.J. Young which states that analytic functions which are symbols of bounded Hankel operators admit par-balanced realizations. The main tool used in this proof is the induced Hilbert spaces and a lifting lemma of Kreîn-Reid-Lax-Dieudonné. Alternatively one can use the Loewner inequality. A short proof of the uniqueness of par-balanced realizations is included. As an application, it is proved that par-balanced realizations of real symmetric transfer functions areJ-self-adjoint.Research supported in part by the Romanian Academy grant GAR-6645/1996.This research was supported in part by NSF grant DMS-9501223.  相似文献   

18.
A similarity analysis of a nonlinear fin equation has been carried out by M. Pakdemirli and A.Z. Sahin [Similarity analysis of a nonlinear fin equation, Appl. Math. Lett. (2005) (in press)]. Here, we consider a further group theoretic analysis that leads to an alternative set of exact solutions or reduced equations with an emphasis on travelling wave solutions, steady state type solutions and solutions not appearing elsewhere.  相似文献   

19.
We study a particular class of autonomous Differential-Algebraic Equations that are equivalent to Ordinary Differential Equations on manifolds. Under appropriate assumptions we determine a straightforward formula for the computation of the degree of the associated tangent vector field that does not require any explicit knowledge of the manifold. We use this formula to study the set of harmonic solutions to periodic perturbations of our equations. Two different classes of applications are provided.  相似文献   

20.
In this article, we develop an explicit symmetric linear phase-fitted four-step method with a free coefficient as parameter. The parameter is used for the optimization of the method in order to solve efficiently the Schrödinger equation and related oscillatory problems. We evaluate the local truncation error and the interval of periodicity as functions of the parameter. We reveal a direct relationship between the periodicity interval and the local truncation error. We also measure the efficiency of the new method for a wide range of possible values of the parameter and compare it to other well known methods from the literature. The analysis and the numerical results help us to determine the optimal values of the parameter, which render the new method highly efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号