首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
    
We define and study logics in the framework of probabilistic team semantics and over metafinite structures. Our work is paralleled by the recent development of novel axiomatizable and tractable logics in team semantics that are closed under the Boolean negation. Our logics employ new probabilistic atoms that resemble so-called extended atoms from the team semantics literature. We also define counterparts of our logics over metafinite structures and show that all of our logics can be translated into functional fixed point logic implying a polynomial time upper bound for data complexity with respect to BSS-computations.  相似文献   

2.
    
In this paper, we study several propositional team logics that are closed under unions, including propositional inclusion logic. We show that all these logics are expressively complete, and we introduce sound and complete systems of natural deduction for these logics. We also discuss the locality property and its connection with interpolation in these logics.  相似文献   

3.
    
This article provides an algebraic study of intermediate inquisitive and dependence logics. While these logics are usually investigated using team semantics, here we introduce an alternative algebraic semantics and we prove it is complete for all intermediate inquisitive and dependence logics. To this end, we define inquisitive and dependence algebras and we investigate their model-theoretic properties. We then focus on finite, core-generated, well-connected inquisitive and dependence algebras: we show they witness the validity of formulas true in inquisitive algebras, and of formulas true in well-connected dependence algebras. Finally, we obtain representation theorems for finite, core-generated, well-connected, inquisitive and dependence algebras and we prove some results connecting team and algebraic semantics.  相似文献   

4.
    
We study hidden-variable models from quantum mechanics and their abstractions in purely probabilistic and relational frameworks by means of logics of dependence and independence, which are based on team semantics. We show that common desirable properties of hidden-variable models can be defined in an elegant and concise way in dependence and independence logic. The relationship between different properties and their simultaneous realisability can thus be formulated and proven on a purely logical level, as problems of entailment and satisfiability of logical formulae. Connections between probabilistic and relational entailment in dependence and independence logic allow us to simplify proofs. In many cases, we can establish results on both probabilistic and relational hidden-variable models by a single proof, because one case implies the other, depending on purely syntactic criteria. We also discuss the ‘no-go’ theorems by Bell and Kochen-Specker and provide a purely logical variant of the latter, introducing non-contextual choice as a team-semantical property.  相似文献   

5.
    
In this paper, we introduce and study a framework that is inspired by the team semantics for propositional dependence logic but deviates from it in several respects. Most importantly, instead of the two semantic layers used in dependence logic – possible worlds and teams – a whole hierarchy of contexts is introduced and different types of formulas are evaluated at different levels of this hierarchy. This leads to a rich stratification of informational types. In this framework, the dependence operator of dependence logic can be defined by the standard propositional connectives (negation, conjunction, disjunction and implication). We explore the formal aspects of this approach and apply it to a number of puzzling phenomena related to modalities and conditionals.  相似文献   

6.
In this paper we analyze k-ary inclusion–exclusion logic, INEX[k], which is obtained by extending first order logic with k-ary inclusion and exclusion atoms. We show that every formula of INEX[k] can be expressed with a formula of k-ary existential second order logic, ESO[k]. Conversely, every formula of ESO[k] with at most k-ary free relation variables can be expressed with a formula of INEX[k]. From this it follows that, on the level of sentences, INEX[k] captures the expressive power of ESO[k].We also introduce several useful operators that can be expressed in INEX[k]. In particular, we define inclusion and exclusion quantifiers and so-called term value preserving disjunction which is essential for the proofs of the main results in this paper. Furthermore, we present a novel method of relativization for team semantics and analyze the duality of inclusion and exclusion atoms.  相似文献   

7.
    
Separation logic is a successful logical system for formal reasoning about programs that mutate their data structures. Team semantics, on the other side, is the basis of modern logics of dependence and independence. Separation logic and team semantics have been introduced with quite different motivations, and are investigated by research communities with rather different backgrounds and objectives. Nevertheless, there are obvious similarities between these formalisms. Both separation logic and logics with team semantics involve the manipulation of second-order objects, such as heaps and teams, by first-order syntax without reference to second-order variables. Moreover, these semantical objects are closely related; it is for instance obvious that a heap can be seen as a team, and the separating conjunction of separation logic is (essentially) the same as the team-semantical disjunction. Based on such similarities, the possible connections between separation logic and team semantics have been raised as a question at several occasions, and lead to informal discussions between these research communities. The objective of this paper is to make this connection precise, and to study its potential but also its obstacles and limitations.  相似文献   

8.
    
  相似文献   

9.
In this paper we study the expressive power of k-ary exclusion logic, EXC[k], that is obtained by extending first order logic with k-ary exclusion atoms. It is known that without arity bounds exclusion logic is equivalent with dependence logic. By observing the translations, we see that the expressive power of EXC[k] lies in between k-ary and (k+1)-ary dependence logics. We will show that, at least in the case when k=1, both of these inclusions are proper.In a recent work by the author it was shown that k-ary inclusion-exclusion logic is equivalent with k-ary existential second order logic, ESO[k]. We will show that, on the level of sentences, it is possible to simulate inclusion atoms with exclusion atoms, and in this way express ESO[k]-sentences by using only k-ary exclusion atoms. For this translation we also need to introduce a novel method for “unifying” the values of certain variables in a team. As a consequence, EXC[k] captures ESO[k] on the level of sentences, and we obtain a strict arity hierarchy for exclusion logic. It also follows that k-ary inclusion logic is strictly weaker than EXC[k].Finally we use similar techniques to formulate a translation from ESO[k] to k-ary inclusion logic with an alternative strict semantics. Consequently, for any arity fragment of inclusion logic, strict semantics is strictly more expressive than lax semantics.  相似文献   

10.
    
  相似文献   

11.
In a modular approach, we lift Hilbert-style proof systems for propositional, modal and first-order logic to generalized systems for their respective team-based extensions. We obtain sound and complete axiomatizations for the dependence-free fragment FO(~) of Väänänen's first-order team logic TL, for propositional team logic PTL, quantified propositional team logic QPTL, modal team logic MTL, and for the corresponding logics of dependence, independence, inclusion and exclusion.As a crucial step in the completeness proof, we show that the above logics admit, in a particular sense, a semantics-preserving elimination of modalities and quantifiers from formulas.  相似文献   

12.
    
A spatial modal logic (SML) is introduced as an extension of the modal logic S4 with the addition of certain spatial operators. A sound and complete Kripke semantics with a natural space (or location) interpretation is obtained for SML. The finite model property with respect to the semantics for SML and the cut‐elimination theorem for a modified subsystem of SML are also presented. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper, we axiomatize the negatable consequences in dependence and independence logic by extending the systems of natural deduction of the logics given in [22] and [11]. We prove a characterization theorem for negatable formulas in independence logic and negatable sentences in dependence logic, and identify an interesting class of formulas that are negatable in independence logic. Dependence and independence atoms, first-order formulas belong to this class. We also demonstrate our extended system of independence logic by giving explicit derivations for Armstrong's Axioms and the Geiger-Paz-Pearl axioms of dependence and independence atoms.  相似文献   

14.
Kripke bundle and C-set semantics are known as semantics which generalize standard Kripke semantics. In [4] and in [1, 2] it is shown that Kripke bundle and C-set semantics are stronger than standard Kripke semantics. Also it is true that C-set semantics for superintuitionistic logics is stronger than Kripke bundle semantics ([6]). Modal predicate logic Q-S4.1 is not Kripke bundle complete ([3] - it is also yielded as a corollary to Theorem 6.1(a) of the present paper). This is shown by using difference of Kripke bundle semantics and C-set semantics. In this paper, by using the same idea we show that incompleteness results in Kripke bundle semantics which are extended versions of [2].  相似文献   

15.
    
Interpretability logic is an extension of provability logic. Veltman models and generalized Veltman models are two semantics for interpretability logic. We consider a connection between Veltman semantics and generalized Veltman semantics. We prove that for a complete image‐finite generalized Veltman modelW there is a Veltman model W ′ that is bisimular to W. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
    
In team semantics, which is the basis of modern logics of dependence and independence, formulae are evaluated on sets of assignments, called teams. Multiteam semantics instead takes mulitplicities of data into account and is based on multisets of assignments, called multiteams. Logics with multiteam semantics can be embedded into a two-sorted variant of existential second-order logics, with arithmetic operations on multiplicities. Here we study the Presburger fragment of such logics, permitting only addition, but not multiplication on multiplicities. It can be shown that this fragment corresponds to inclusion-exclusion logic in multiteam semantics, but, in contrast to the situation in team semantics, that it is strictly contained in independence logic. We give different characterisations of this fragment by various atomic dependency notions.  相似文献   

17.
The paper presents a semantics for quantified modal logic which has a weaker axiomatization than the usual Kripke semantics. In particular, the Barcan Formula (BF) and its converse are not valid with the proposed semantics. Subclasses of models which validate BF and other interesting formulas are presented. A completeness theorem is proved, and the relation between this result and completeness with respect to Kripke models is investigated.  相似文献   

18.
This paper presents two classes of propositional logics (understood as a consequence relation). First we generalize the well-known class of implicative logics of Rasiowa and introduce the class of weakly implicative logics. This class is broad enough to contain many “usual” logics, yet easily manageable with nice logical properties. Then we introduce its subclass–the class of weakly implicative fuzzy logics. It contains the majority of logics studied in the literature under the name fuzzy logic. We present many general theorems for both classes, demonstrating their usefulness and importance.The work was supported by grant A100300503 of the Grant Agency of the Academy of Sciences of the Czech Republic and by Institutional Research Plan AVOZ10300504.  相似文献   

19.
In order to modelize the reasoning of intelligent agents represented by a poset T, H. Rasiowa introduced logic systems called “Approximation Logics”. In these systems the use of a set of constants constitutes a fundamental tool. We have introduced in [8] a logic system called without this kind of constants but limited to the case that T is a finite poset. We have proved a completeness result for this system w.r.t. an algebraic semantics. We introduce in this paper a Kripke‐style semantics for a subsystem of for which there existes a deduction theorem. The set of “possible worldsr is enriched by a family of functions indexed by the elements of T and satisfying some conditions. We prove a completeness result for system with respect to this Kripke semantics and define a finite Kripke structure that characterizes the propositional fragment of logic . We introduce a reational semantics (found by E. Orlowska) which has the advantage to allow an interpretation of the propositionnal logic using only binary relations. We treat also the computational complexity of the satisfiability problem of the propositional fragment of logic .  相似文献   

20.
    
The problem of completeness for predicate modal logics is still under investigation, although some results have been obtained in the last few years (cf. [2, 3, 4, 7]). As far as we know, the case of multimodal logics has not been addressed at all. In this paper, we study the combination of modal logics in terms of combining their semantics. We demonstrate by a simple example that in this sense predicate modal logics are not so easily manipulated as propositional ones: mixing two Kripke-complete predicate modal logics (one with the Barcan formula, and the other without) results in a Kripke-incomplete system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号