首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Separation logic is a successful logical system for formal reasoning about programs that mutate their data structures. Team semantics, on the other side, is the basis of modern logics of dependence and independence. Separation logic and team semantics have been introduced with quite different motivations, and are investigated by research communities with rather different backgrounds and objectives. Nevertheless, there are obvious similarities between these formalisms. Both separation logic and logics with team semantics involve the manipulation of second-order objects, such as heaps and teams, by first-order syntax without reference to second-order variables. Moreover, these semantical objects are closely related; it is for instance obvious that a heap can be seen as a team, and the separating conjunction of separation logic is (essentially) the same as the team-semantical disjunction. Based on such similarities, the possible connections between separation logic and team semantics have been raised as a question at several occasions, and lead to informal discussions between these research communities. The objective of this paper is to make this connection precise, and to study its potential but also its obstacles and limitations.  相似文献   

2.
In this paper, we introduce and study a framework that is inspired by the team semantics for propositional dependence logic but deviates from it in several respects. Most importantly, instead of the two semantic layers used in dependence logic – possible worlds and teams – a whole hierarchy of contexts is introduced and different types of formulas are evaluated at different levels of this hierarchy. This leads to a rich stratification of informational types. In this framework, the dependence operator of dependence logic can be defined by the standard propositional connectives (negation, conjunction, disjunction and implication). We explore the formal aspects of this approach and apply it to a number of puzzling phenomena related to modalities and conditionals.  相似文献   

3.
In this paper, we study several propositional team logics that are closed under unions, including propositional inclusion logic. We show that all these logics are expressively complete, and we introduce sound and complete systems of natural deduction for these logics. We also discuss the locality property and its connection with interpolation in these logics.  相似文献   

4.
We define and study logics in the framework of probabilistic team semantics and over metafinite structures. Our work is paralleled by the recent development of novel axiomatizable and tractable logics in team semantics that are closed under the Boolean negation. Our logics employ new probabilistic atoms that resemble so-called extended atoms from the team semantics literature. We also define counterparts of our logics over metafinite structures and show that all of our logics can be translated into functional fixed point logic implying a polynomial time upper bound for data complexity with respect to BSS-computations.  相似文献   

5.
In the current paper, we re-examine the connection between formal argumentation and logic programming from the perspective of semantics. We observe that one particular translation from logic programs to instantiated argumentation (the one described by Wu, Caminada and Gabbay) is able to serve as a basis for describing various equivalences between logic programming semantics and argumentation semantics. In particular, we are able to show equivalence between regular semantics for logic programming and preferred semantics for formal argumentation. We also show that there exist logic programming semantics (L-stable semantics) that cannot be captured by any abstract argumentation semantics.  相似文献   

6.
This article provides an algebraic study of intermediate inquisitive and dependence logics. While these logics are usually investigated using team semantics, here we introduce an alternative algebraic semantics and we prove it is complete for all intermediate inquisitive and dependence logics. To this end, we define inquisitive and dependence algebras and we investigate their model-theoretic properties. We then focus on finite, core-generated, well-connected inquisitive and dependence algebras: we show they witness the validity of formulas true in inquisitive algebras, and of formulas true in well-connected dependence algebras. Finally, we obtain representation theorems for finite, core-generated, well-connected, inquisitive and dependence algebras and we prove some results connecting team and algebraic semantics.  相似文献   

7.
8.
We study hidden-variable models from quantum mechanics and their abstractions in purely probabilistic and relational frameworks by means of logics of dependence and independence, which are based on team semantics. We show that common desirable properties of hidden-variable models can be defined in an elegant and concise way in dependence and independence logic. The relationship between different properties and their simultaneous realisability can thus be formulated and proven on a purely logical level, as problems of entailment and satisfiability of logical formulae. Connections between probabilistic and relational entailment in dependence and independence logic allow us to simplify proofs. In many cases, we can establish results on both probabilistic and relational hidden-variable models by a single proof, because one case implies the other, depending on purely syntactic criteria. We also discuss the ‘no-go’ theorems by Bell and Kochen-Specker and provide a purely logical variant of the latter, introducing non-contextual choice as a team-semantical property.  相似文献   

9.
In this paper we study the expressive power of k-ary exclusion logic, EXC[k], that is obtained by extending first order logic with k-ary exclusion atoms. It is known that without arity bounds exclusion logic is equivalent with dependence logic. By observing the translations, we see that the expressive power of EXC[k] lies in between k-ary and (k+1)-ary dependence logics. We will show that, at least in the case when k=1, both of these inclusions are proper.In a recent work by the author it was shown that k-ary inclusion-exclusion logic is equivalent with k-ary existential second order logic, ESO[k]. We will show that, on the level of sentences, it is possible to simulate inclusion atoms with exclusion atoms, and in this way express ESO[k]-sentences by using only k-ary exclusion atoms. For this translation we also need to introduce a novel method for “unifying” the values of certain variables in a team. As a consequence, EXC[k] captures ESO[k] on the level of sentences, and we obtain a strict arity hierarchy for exclusion logic. It also follows that k-ary inclusion logic is strictly weaker than EXC[k].Finally we use similar techniques to formulate a translation from ESO[k] to k-ary inclusion logic with an alternative strict semantics. Consequently, for any arity fragment of inclusion logic, strict semantics is strictly more expressive than lax semantics.  相似文献   

10.
In this paper, we axiomatize the negatable consequences in dependence and independence logic by extending the systems of natural deduction of the logics given in [22] and [11]. We prove a characterization theorem for negatable formulas in independence logic and negatable sentences in dependence logic, and identify an interesting class of formulas that are negatable in independence logic. Dependence and independence atoms, first-order formulas belong to this class. We also demonstrate our extended system of independence logic by giving explicit derivations for Armstrong's Axioms and the Geiger-Paz-Pearl axioms of dependence and independence atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号