首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Silver particles are formed by electrochemical deposition on the carbon electrode surface. It is found that the deposition process occurs according to the progressive nucleation mechanism, which results in formation of silver particles with the size of 95 to 190 nm as dependent on the electrodeposition time. The values of silver particle size and support surface coverage by metal obtained on the basis of microphotographs indicate that cathodic polarization in the presence of dissolved oxygen results in particle size redistribution due to the reaction of silver particle dissolution with further deposition simultaneously with oxygen electroreduction. The reaction of molecular oxygen electroreduction on a carbon electrode with deposited dispersed silver occurs via a mixed two- and four-electron mechanism. The observed limiting reaction current is of diffusion nature.  相似文献   

3.
A new strategy for global geometry optimization of clusters is presented. Important features are a restriction of search space to favorable nearest-neighbor distance ranges, a suitable cluster growth representation with diminished correlations, and easy transferability of the results to larger clusters. The strengths and possible limitations of the method are demonstrated for Si10 using an empirical potential.  相似文献   

4.
The electrochemiluminescent (ECL) behavior of lucigenin on a multi-wall carbon nanotube/nano-Au modified glassy carbon electrode (MWNT/nano-Au/GCE) was studied in this paper. Compared with the bare GCE, the ECL intensity of lucigenin can be greatly enhanced at MWNT/nano-Au/GCE. Based on the fact that superoxide dimutase (SOD) could obviously inhibit the ECL of lucigenin at MWNT/nano-Au/GCE, a sensitive ECL biosensor for determination of SOD was developed with a wide linear range of 5.0 × 10−8–5.0 × 10−6 mol/L with detection limit of 2.5 × 10−8 mol/L.  相似文献   

5.
改进了碳纳米管在壳聚糖溶液中的分散方法,制备了多壁碳纳米管/壳聚糖多层膜修饰玻碳电极,对比了不同修饰层数膜电极的循环伏安和电化学阻抗行为,5层多壁碳纳米管/壳聚糖膜修饰玻碳电极的电化学性能优良.在最优实验条件下,该修饰玻碳电极对邻苯二酚(CAT)有灵敏的响应,CAT浓度在3.99×10-6~9.09×10-4mol/L范围内与氧化峰电流呈良好的线性关系,检出限为2.39×10-6mol/L(S/N=3).该修饰玻碳电极性能稳定,测定4×10-5mol/LCAT溶液,RSD(n=10)为2.1%;15周后,该电极的响应值仅降低1.9%.  相似文献   

6.
The technique of gamma-ray analysis of light elements (GRALE) is extended to measure the concentration of carbon, nitrogen, oxygen, sulfur and silicon in coal samples. The composition of the sample is determined by analyzing the spectrum of gamma rays emitted following inelastic scattering of protons bombarding the target. A large volume lithium drifted germanium detector is used as a gamma-ray detector in this work. Coal samples are irradiated with 9.5 MeV protons in a helium atmosphere for 1000 sec. Results with standard coal samples indicate that the method has an accuracy of ∼5% of the concentration of each element and a precision of ∼4% for elements constituting at least 1% of the coal by weight.  相似文献   

7.
Summary Inter-residue contacts map prediction is one of the most important intermediate steps to the protein folding problem. In this paper, we focus on the problem of protein inter-residue contacts map prediction based on neural network technique. Firstly, we use a genetic algorithm (GA) to optimize the radial basis function widths and hidden centers of a radial basis function neural network (RBFNN), then a novel binary encoding scheme is employed to train the network for the purpose of learning and predicting the inter-residue contacts patterns of protein sequences got from the protein data bank (PDB). The experimental evidence indicates the utility of our proposed encoding strategy and GA optimized RBFNN. Moreover, the simulation results demonstrate that the network got a better performance for these proteins, whose residue length falls into the area of (100, 300), and the predicted accuracy with a contact threshold of 7 Å scores higher than the other 3 values with 5, 6, and 8 Å .  相似文献   

8.
A novel amperometric immunosensor for the determination of alpha-fetoprotein (AFP) was constructed using films of multi-wall carbon nanotubes/DNA/thionine/gold nanoparticles (nano-Au). Firstly, multi-wall carbon nanotubes (MWCNT) dispersed in poly(diallydimethlammonium chloride) (PDDA) were immobilized on the nano-Au film which was electrochemically deposited on the surface of glassy carbon electrode. Then a negatively charged DNA film was absorbed on the positively charged PDDA. Subsequently, thionine was attached to the electrode via the electrostatic interaction between thionine and the DNA. Finally, the nano-Au was retained on the thionine film for immobilization of AFP antibody (anti-AFP). The modification process was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM). The factors possibly influenced the performance of the proposed immunosensors were studied in detail. Under optimal conditions, the proposed immunosensor exhibited good electrochemical behavior to AFP in a two concentration ranges: 0.01–10.0 and 10.0–200.0 ng/mL with a relatively low detection limit of 0.04 ng/mL at three times the background noise. Moreover, the selectivity, repeatability and stability of the proposed immunosensor were acceptable.  相似文献   

9.
The oxygen reduction reaction has been investigated on double-walled carbon nanotube (DWCNT) modified glassy carbon (GC) electrodes in acid and alkaline media using the rotating disk electrode (RDE) method. The surface morphology and composition of DWCNT samples was examined by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Aqueous suspensions of DWCNTs were prepared using Nafion and non-ionic surfactant Triton X-100 as dispersing agents. The RDE results indicated that the DWCNT modified GC electrodes are active catalysts for oxygen reduction in alkaline solution. In acid media DWCNT/GC electrodes possess poor electrocatalytic properties for O2 reduction which indicates lack of metal catalyst impurities in the DWCNT material studied. The oxygen reduction behaviour of DWCNTs was similar to that of multi-walled carbon nanotubes (MWCNTs) observed in our previous studies.  相似文献   

10.
A novel functional material is obtained on the basis of multiwall carbon nanotubes (CNT) modified by copper nanoparticles, which are distributed in the interlayer space and inside the CNT channel. Transformations induced by IR heating in a Cu(OOCH3)2 · H2O-CNT system are studied by powder X-ray diffraction analysis and transmission electron microscopy. The CuO, Cu2O, and Cu nanparticles penetrate into graphite-like layers of the CNT and form intercalated CNT. The intercalation of the CNT by Cu(OOCCH3)2 · H2O can be used for their purification from impurity nanoparticles of amorphous carbon and polyaromatic compounds.  相似文献   

11.
Fei J  Wu K  Wang F  Hu S 《Talanta》2005,65(4):918-924
This paper describes glucose nanosensors based on the co-electrodeposition of a poly(vinylimidazole) complex of [Os(bpy)2Cl]+/2+ and glucose oxidase (GOD) on a low-noise carbon fiber nanoelectrodes (CFNE). The SEM image shows that the osmium redox polymer/enzyme composite film is uniform. The film modified CFNE exhibits the classical features of a kinetically fast redox couple bound to the electrode surface. A strong and stable electrocatalytic current is observed in the presence of glucose. Under the optimal experimental conditions, the nanosensor offers a highly sensitive and rapid response to glucose at an operating potential of 0.22 V. A wide linear dynamic rang of 0.01-15 mM range was achieved with a detection limit of 0.004 mM. Compared with the conventional gold electrode, the nanosensor possessed higher sensitivity and longer stability. Successful attempts were made in real time monitoring rabbit blood glucose levels.  相似文献   

12.
Two different Fe-N/C(SiC) catalysts (Fe + Bipyr/C(SiC) and Fe + Phen/C(SiC)) for oxygen reduction based on silicon carbide derived carbon were synthesized and investigated in 0.1 M KOH aqueous solution by rotating disc electrode method. It was found that the electrocatalytic activity and stability are significantly influenced by the change of the nitrogen ligand in the catalyst. Comparable current density values obtained for 20%Pt-Vulcan electrode could be achieved for Fe + Bipyr/C(SiC) and Fe + Phen/C(SiC) catalysts in alkaline media. The durability tests (~ 150 h) showed that the decrease of the activity for Fe + Bipyr/C(SiC) and Fe + Phen/C(SiC) is only 0.5 mV h 1 and 0.17 mV h 1, respectively. The Fe + Bipyr/C(SiC) catalyst demonstrated higher activity in the RDE measurements, but during the long-term test the Fe + Phen/C(SiC) catalyst prove to be more stable than Fe + Bipyr/C(SiC).  相似文献   

13.
A novel glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on Ag nanoparticles-decorated multiwalled carbon nanotube (AgNP-MWNT) modified glass carbon electrode (GCE). The AgNP-MWNT composite membrane showed an improving biocompatibility for GOx immobilization and an enhancing electrocatalytic activity toward reduction of oxygen due to decoration of AgNPs on MWNT surfaces. The AgNPs also accelerated the direct electron transfer between redox-active site of GOx and GCE surface because of their excellent conductivity and large capacity for protein loading, leading to direct electrochemistry of GOx. The glucose biosensor of this work showed a lower limit of detection of 0.01 mM (S/N?=?3) and a wide linear range from 0.025 to 1.0 mM, indicating an excellent analytical performance of the obtained biosensor to glucose detection. The resulting biosensor exhibits good stability and excellent reproducibility. Such bionanocomposite provides us good candidate material for fabrication of biosensors based on direct electrochemistry of immobilized enzymes.  相似文献   

14.
TiO2 nanoparticles were homogeneously coated on multi-walled carbon nanotubes by hydrothermal deposition, this nanocomposite may be a promising material for myoglobin immobilization in view of its high biocompatibility and large surface. The glassy carbon electrode modified with Mb-TiO2/MWCNTs films exhibited a pair of weU defined, stable and nearly reversible cycle voltammetric peaks. The electron transfer between Mb and electrode surface, Ks of 3.08 s^-1, was greatly facilitated in the TiO2/ MWCNTs film. The electrocatalytic reductions of hydrogen peroxide were studied, the apparent Michaelis-Menten constant is calculated to be 83.10 μmol/L, which shows a large catalytic activity of Mb in the TiO2/MWCNTs film to H2O2.  相似文献   

15.
Anthraquinone groups were electrochemically grafted to glassy carbon (GC) electrodes via methylene linker to study the oxygen reduction reaction (ORR) in alkaline medium. Two different anthraquinone derivatives, 2-bromomethyl-anthraquinone or 2-chloromethyl-anthraquinone, were used to modify the GC electrode surface. Several modification conditions encompassing potential cycling and electrolysis at a fixed potential were employed in order to vary the surface concentration of MAQ groups (Γ MAQ) and to study the dependence of the O2 reduction behaviour on electrografting procedure. Cyclic voltammetry confirmed the presence of anthraquinone moieties attached to the GC electrode and Γ MAQ varied in the range of (0.5–2.4)?×?10?10 mol cm?2. Oxygen reduction was studied on MAQ-modified GC electrodes of various surface coverage using the rotating disc electrode (RDE) and rotating ring-disc electrode (RRDE) methods. The RDE and RRDE results of O2 reduction reveal that GC/MAQ electrodes show rather similar electrocatalytic behaviour towards the ORR yielding hydrogen peroxide as the final product.  相似文献   

16.
A novel electrochemical sensor for the determination of bisphenol A (BPA) was fabricated by block polyelectrolyte composite films, which composed of diblock polyelectrolyte poly (2-hydroxyethyl methacrylate)-b-poly (2-(dimethylamino) ethyl methacrylate) (PHEMA-b-PDMAEMA, noted as PHD in the later content) and multi-walled carbon nanotubes (MWCNTs). The tertiary amino groups of PDMAEMA can be protonated at physiological pH. The protonated PDMAEMA can thus interact with the negatively charged BPA through electrostatic attraction to increase the BPA sorption capacity and enhance the ability for highly sensitive detection of BPA. The PHD/MWCNTs composite films combine the electrocatalytic property of MWCNTs and the electrostatic attraction of protonated PHD. Because of the above-mentioned excellent property of the composite films, the PHD/MWCNTs/glassy carbon electrode exhibited good electrocatalytic activity to electrooxidation of BPA. The wide linear response range of the BPA sensor was from 4.56 × 10?5 g L?1 to 2.28 × 10?2 g L?1 with a lower detection limit of 2.28 × 10?6 g L?1 (S/N = 3) and high sensitivity 2442.86 μA L g?1 cm?2. The current reached the steady-state current with a shorter response time less than 4 s. The proposed method was successfully applied to determine BPA in real samples (PVC food package, milk, tap water and pond water) and satisfactory results were obtained. These results indicated that the block polyelectrolyte composite have potential applicability of the BPA sensor.  相似文献   

17.
A thin-layer of polypyrrole (PPy) film, immobilized with neutral 5,10,15,20-tetraphenylporphyrinato cobalt (II) (Co-TPP), was successfully and uniformly deposited onto mesoporous carbon fibre paper (CFP) via vapor-phase polymerization. The resulting PPy/Co-TPP-modified carbon fibre paper (PPy/Co-TPP-CFP) electrode was characterized by cyclic voltammetry, SEM and EDX-ray mapping. Its electrochemical stability and long-term electrocatalytic performance were investigated in a half-fuel cell testing system. The electrode displayed significant electrocatalytic performance for oxygen reduction at 0.0 V (vs. Ag/AgCl), with notable long-term stability.  相似文献   

18.
Ye D  Luo L  Ding Y  Chen Q  Liu X 《The Analyst》2011,136(21):4563-4569
A novel nitrite sensor was fabricated based on a graphene/polypyrrole/chitosan nanocomposite film modified glassy carbon electrode. The nanocomposite film was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electron transfer behaviour of the modified electrodes was investigated in [Fe(CN)(6)](3-)/(4-) redox probe using cyclic voltammetry and electrochemical impedance spectroscopy. Differential pulse voltammetry and amperometry were used to study the electrochemical properties of the proposed sensor. Under optimum conditions, the sensor exhibited good reproducibility and stability for nitrite determination. Linear response was obtained in the range of 0.5-722 μM with a detection limit of 0.1 μM (S/N = 3) for nitrite determination.  相似文献   

19.
A new alpha-fetoprotein-MIP (AFP-MIP) immunosensor based on glass carbon electrode (GCE) modified with polythionine (PTh) and gold nanoparticles (AuNPs) was successfully prepared for the sensitive detection of AFP. The AFP-MIP immunosensor presented a facile preparation, low sample consumption, and good stability, and could become a new promising method for the detection of AFP.  相似文献   

20.
制备了纳米Nd2O3/多壁碳纳米管修饰电极并用于亚硝酸盐的检测。采用原子力显微镜、X-粉末衍射仪表征制备的纳米材料。实验表明:修饰电极对亚硝酸根的氧化具有明显地电催化作用。利用示差脉冲伏安法测定亚硝酸盐,其氧化峰电流和其浓度在20μmol·L-1-20 mmol·L-1范围内呈现良好的线性关系,检测线为0.83μmol·L-1(S/N=3)。更重要的是,实验结果表明:与Nd2O3修饰电极相比,多壁碳纳米管能显著地提高电极的稳定性。此外,修饰电极具有良好的选择性,能用于样品的检测,结果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号