首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cross-helicity integral is known in fluid dynamics and plasma physics as a topological invariant which measures the mutual linkage of two divergence-free vector fields, e.g., magnetic fields, on a three-dimensional domain. Generalizing this concept, a new topological invariant is found which measures the mutual linkage of three closed two-forms, e.g., electromagnetic fields, on a four-dimensional domain. The integral is shown to detect a separation of the cross helicity between two of the fields with the help of the third field. It can be related to the triple linking number known in knot theory. Furthermore, it is shown that the well-known three-dimensional cross helicity and the new four-dimensional invariant are the first two examples of a series of topological invariants which are defined by n-1 field strengths F=dA on a simply connected n-dimensional manifold M(n).  相似文献   

3.
Starting from the instant form of relativistic quantum dynamics for a system of interacting fields, where amongst the ten generators of the Poincaré group only the Hamiltonian and the boost operators carry interactions, we offer an algebraic method to satisfy the Poincaré commutators.We do not need to employ the Lagrangian formalism for local fields with the N?ether representation of the generators. Our approach is based on an opportunity to separate in the primary interaction density a part which is the Lorentz scalar. It makes possible apply the recursive relations obtained in this work to construct the boosts in case of both local field models (for instance with derivative couplings and spins ≥ 1) and their nonlocal extensions. Such models are typical of the meson theory of nuclear forces, where one has to take into account vector meson exchanges and introduce meson-nucleon vertices with cutoffs in momentum space. Considerable attention is paid to finding analytic expressions for the generators in the clothed-particle representation, in which the so-called bad terms are simultaneously removed from the Hamiltonian and the boosts. Moreover, the mass renormalization terms introduced in the Hamiltonian at the very beginning turn out to be related to certain covariant integrals that are convergent in the field models with appropriate cutoff factors.  相似文献   

4.
《Annals of Physics》1986,169(1):1-28
A consistent quantization of chromodynamics in a completely fixed axial gauge is carried out by using the Dirac bracket quantization procedure. The main results are: The translation of Dirac brackets into equal-time commutators is possible, without ambiguities, because of the absence of ordering problems. All equal-time commutators are compatible with constraints and gauge conditions holding as strong operator relations. All equal-time commutators are compatible with chromoelectric, chromomagnetic, and fermionic fields vanishing at spatial infinity. The colored gauge potentials A0,a, A1,a, and A2,a are seen to develop a physically significant, although pure gauge, behavior at x3 = ± ∞, as required by the presence of a nontrivial topological content. Poincaré invariance is satisfied without introducing in the Hamiltonian “extra” quantum mechanical potentials. The determinant of the Faddeev-Popov matrix does not depend upon the field variables.  相似文献   

5.
A spinor Lagrangian invariant under global coordinate, local Lorentz and local chiral SU(n) × SU(n) gauge transformations is presented. The invariance requirement necessitates the introduction of boson fields, and a theory for these fields is then developed by relating them to generalizations of the vector connections in general relativity and utilizing an expanded scalar curvature as a boson Lagrangian. In implementing this plan, the local Lorentz group is found to greatly facilitate the correlation of the boson fields occurring in the spinor Lagrangian with the generalized vector connections.The independent boson fields of the theory are assumed to be the inhomogeneously transforming irreducible parts of the connections. It turns out that no homogeneously transforming parts are necessary to reproduce the chiral Lagrangian usually used as a basis for phenomenological field theories. The Lagrangian in question appears when the gravitational interaction is turned off. It includes pseudoscalar, spinor, vector, and axial vector fields, and the vector fields carry mass in spite of the fact that the theory is locally gauge invariant.  相似文献   

6.
Equal-time commutators of fields with charges are calculated in a cavity approximation to the MIT bag model, with N flavours of non-interacting quarks confined to a rigid spherical cavity and SU(N) symmetry arbitrarily broken by mass terms. It is proved that inside the cavity the algebra is identical with that of free field theory, whilst on the boundary quark fields commute with axial charges. Vector divergences and sigma commutators belong to a (N,N) + (N, N) multiplet of chiral SU(N) × SU(N). Axial divergences contain additional surface terms which do not contribute to sigma commutators. A non-strange quark mass in the range 20–44 MeV is required to give a value 30–70 MeV for the nucleon matrix element of the sigma commutator relevant to pion-nucleon scattering.  相似文献   

7.
We present a formalism where the topological configurations of pure Yang-Mills theory are characterised using gauge fields alone. Here, we obtain an expression for the charges of these topologicalSO(3) gauge field configurations in terms of the Abelian vector potentials. In this formalism we analyse the ’t Hooft-Polyakov monopole solution.  相似文献   

8.
Group field theories whose Feynman diagrams describe 3d gravity with a varying configuration of Wilson loop observables and 3d gravity with volume observables at each vertex are defined. The volume observables are created by the usual spin network grasping operators which require the introduction of vector fields on the group. We then use this to define group field theories that give a previously defined spin foam model for fermion fields coupled to gravity, and the simpler “quenched” approximation, by using tensor fields on the group. The group field theory naturally includes the sum over fermionic loops at each order of the perturbation theory.  相似文献   

9.
In this paper we explicitly construct local ν-Euler derivations , where the ξα are local, conformally symplectic vector fields and the are formal series of locally defined differential operators, for Fedosov star products on a symplectic manifold (M,ω) by means of which we are able to compute Deligne's characteristic class of these star products. We show that this class is given by , where is a formal series of closed two-forms on M the cohomology class of which coincides with the one introduced by Fedosov to classify his star products. Moreover, we consider star products that have additional algebraic structures and compute the effect of these structures on the corresponding characteristic classes of these star products. Specifying the constituents of Fedosov's construction we obtain star products with these special properties. Finally, we investigate equivalence transformations between such special star products and prove existence of equivalence transformations being compatible with the considered algebraic structures. Dedicated to the memory of Moshé Flato Received: 28 June 1999 / Accepted: 11 April 2002?Published online: 11 September 2002  相似文献   

10.
Brian D. Serot 《Annals of Physics》2007,322(12):2811-2830
Electromagnetic (EM) interactions are incorporated in a recently proposed effective field theory of the nuclear many-body problem. Earlier work with this effective theory exhibited EM couplings that are correct only to lowest order in both the pion fields and the electric charge. The Lorentz-invariant effective field theory contains nucleons, pions, isoscalar scalar (σ) and vector (ω) fields, and isovector vector (ρ) fields. The theory exhibits a nonlinear realization of SU(2)L × SU(2)R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the currents and the strong-interaction dynamics, it satisfies the symmetries of the underlying QCD, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. It has been verified that for normal nuclear systems, the effective lagrangian can be expanded systematically in powers of the meson fields (and their derivatives) and can be truncated reliably after the first few orders. The complete EM lagrangian arising from minimal substitution is derived and shown to possess the residual chiral symmetry of massless, two-flavor QCD with EM interactions. The uniqueness of the minimal EM current is proved, and the properties of the isovector vector and axial-vector currents are discussed, generalizing earlier work. The residual chiral symmetry is maintained in additional (non-minimal) EM couplings expressed as a derivative expansion and in implementing vector meson dominance. The role of chiral anomalies in the EM lagrangian is briefly discussed.  相似文献   

11.
12.
The program of this Letter, and the one following it, is to develop a formulation of supersymmetric electrodynamics in which the massless fields (photons and neutrinos) are bilinear (actually, commutators) of constituent singleton fields. here we lay the foundations, describing the unique gauge invariant interaction that is allowed in the context of conventional quantum field theory. New quantization rules, leading to super QED, are dealt with in the second Letter.  相似文献   

13.
The formulation of quantum mechanics developed by Bohm, which can generate well-defined trajectories for the underlying particles in the theory, can equally well be applied to relativistic quantum field theories to generate dynamics for the underlying fields. However, it does not produce trajectories for the particles associated with these fields. Bell has shown that an extension of Bohm’s approach can be used to provide dynamics for the fermionic occupation numbers in a relativistic quantum field theory. In the present paper, Bell’s formulation is adopted and elaborated on, with a full account of all technical detail required to apply his approach to a bosonic quantum field theory on a lattice. This allows an explicit computation of (stochastic) trajectories for massive and massless particles in this theory. Also particle creation and annihilation, and their impact on particle propagation, is illustrated using this model.  相似文献   

14.
Relativistic zero-mass fields are described as manifestly covariant unitary irreducible representations of the Poincaré group. The wave-equations, which are a necessary condition for unitarity, are constructed for spinor fields of arbitrary spin and for tensor fields of integer spin. Poincaré covariance together with causality and positive energy are used to determine the commutators of quantized fields up to a positive multiple and to prove the spin-statistics theorem. The use of potentials for boson fields is discussed and it is shown that, at the expense of manifest covariance, potentials may be introduced as zero-mass limits of the massive Wigner representations.  相似文献   

15.
A gauge covariant point-splitting regularisation is employed to calculate different anomalous commutators in four dimensional chiral gauge theories. For an external gauge field the fixed time anomalous commutator of the gauge group generators is seen to violate the Jacobi identity. The cohomological prediction can be confirmed provided the electric fields do not commute. Other commutators like the current-current and current-electric field are consistent with the Bjorken-Johnson-Low (BJL) derivation.  相似文献   

16.
We construct gauged N = 8 supergravity theories in five dimensions. Instead of the twenty-seven vector fields of the ungauged theory, the gauged theories contain fifteen vector fields and twelve second-rank antisymmetric tensor fields satisfying self-dual field equations. The fifteen vector fields can be used to gauge any of the fifteen-dimensional semisimple subgroups of SL(6,R), specially SO(p, 6?p) for p = 0, 1, 2, 3. The gauged theories also have a physical global SU(1,1) symmetry which survives from the E6(6) symmetry of the ungauged theory. This SU(1,1) for the SO(6) gauging is presumably related to that of the chiral N = 2 theory in ten dimensions. In our formalism we maintain a composite local USp(8) symmetry analogous to SU(8) in four dimensions.  相似文献   

17.
We present a theory, with experimental tests, that treats exactly the effect of radiofrequency (RF) fields on quadrupolar nuclei, yet retains the symbolic expressions as much as possible. This provides a mathematical model of these interactions that can be easily connected to state-of-the-art optimization methods, so that chemically-important parameters can be extracted from fits to experimental data. Nuclei with spins >1/2 typically experience a Zeeman interaction with the (possibly anisotropic) local static field, a quadrupole interaction and are manipulated with RF fields. Since RF fields are limited by hardware, they seldom dominate the other interactions of these nuclei and so the spectra show unusual dependence on the pulse width used. The theory is tested with 23Na NMR nutation spectra of a single crystal of sodium nitrate, in which the RF is comparable with the quadrupole coupling and is not necessarily on resonance with any of the transitions. Both the intensity and phase of all three transitions are followed as a function of flip angle. This provides a more rigorous trial than a powder sample where many of the details are averaged out. The formalism is based on a symbolic approach which encompasses all the published results, yet is easily implemented numerically, since no explicit spin operators or their commutators are needed. The classic perturbation results are also easily derived. There are no restrictions or assumptions on the spin of the nucleus or the relative sizes of the interactions, so the results are completely general, going beyond the standard first-order treatments in the literature.  相似文献   

18.
We introduce and study the Wilson loops in general 3D topological field theories (TFTs), and show that the expectation value of Wilson loops also gives knot invariants as in the Chern-Simons theory. We study the TFTs within the Batalin-Vilkovisky (BV) and the Alexandrov-Kontsevich-Schwarz-Zaboronsky (AKSZ) framework, and the Ward identities of these theories imply that the expectation value of the Wilson loop is a pairing of two dual constructions of (co)cycles of certain extended graph complex (extended from Kontsevich’s graph complex to accommodate the Wilson loop). We also prove that there is an isomorphism between the same complex and certain extended Chevalley-Eilenberg complex of Hamiltonian vector fields. This isomorphism allows us to generalize the Lie algebra weight system for knots to weight systems associated with any homological vector field and its representations. As an example we construct knot invariants using holomorphic vector bundle over hyperKähler manifolds.  相似文献   

19.
We formulate a space-time translationT 4 gauge theory of gravity on the Minkowski space-time with appropriate choice of the Lagrangian. By comparing the energy-momentum law of this theory with that of new general relativity constructed on the Weitzenböck space-time we find that in the classical limit the gauge potentials correspond to the parallel vector fields in the Weitzenböck space-time and the gauge field equation coincides with the field equation of gravity in new general relativity in the linearized version. Thus we conclude that in the classical limit theT 4 gauge theory of gravity leads to the new general relativity.  相似文献   

20.
By means of a Clebsch representation which differs from that previously applied to electromagnetic field theory it is shown that Maxwell's equations are derivable from a variational principle. In contrast to the standard approach, the Hamiltonian complex associated with this principle is identical with the generally accepted energy-momentum tensor of the fields. In addition, the Clebsch representation of a contravariant vector field makes it possible to consistently construct a field theory based upon a direction-dependent Lagrangian density (it is this kind of Lagrangian density that may arise when developing the Finslerian extension of general relativity). The corresponding field equations are proved to be independent of any gauge of Clebsch potentials. The law of energy-momentum conservation of the field appears to be covariant and integrable in a rather wide class of direction-dependent Lagrangian densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号