首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The measurement of the cross section of the reaction 241Am(n,2n)240Am has been performed at neutron energies from 8.8 to 11.1 MeV, implementing the activation technique. The neutron beam was produced at the TANDEM accelerator of NCSR “Demokritos” by the 2H(d,n)3He reaction, using a deuterium gas target. During the 5-day long irradiation, the neutron beam fluctuations were monitored in 100 seconds intervals by a BF3 counter connected with a multiscaling unit. The radioactive target consisted of a 37 GBq 241Am source enclosed in a Pb container. A natural Au foil, a 27Al foil and a 93Nb foil were used as reference materials for the neutron flux determination. After the end of the irradiation the activity induced at the target and the reference foils, was measured off-line by a 56% HPGe detector.  相似文献   

2.
The aim of this study was to identify gamma self-absorption correction factors for different types of Egyptian Mediterranean coastal sediments. Self-absorption corrections based on direct transmission through different thicknesses of the most dominant sediment species have been tested against point sources with gamma-ray energies of 241Am, 137Cs and 60Co with 2% uncertainties. Black sand samples from the Rashid branch of the Nile River quantitatively absorbed the low energy of 241Am through a thickness of 5 cm. In decreasing order of gamma energy self-absorption of 241Am, the samples under investigation ranked black sand, Matrouh sand, Sidi Gaber sand, shells, Salloum sand, and clay. Empirical self-absorption correction formulas were also deduced. Chemical analyses such as pH, CaCO3, total dissolved solids, Ca2+, Mg2+, CO32?, HCO3? and total Fe2+ have been carried out for the sediments. The relationships between self absorption corrections and the other chemical parameters of the sediments were also examined.  相似文献   

3.
As an important radioisotope in nuclear industry and other fields, 241Am is one of the most serious contamination concerns due to its high radiation toxicity and long half-life. Encouraging biosorption of 241Am from aqueous solutions by free or immobilized Rhizopus arrhizus (R. arrhizus) has been observed in our experiments. In this study, the preliminary evaluation on the mechanism was further explored via chemical or biological modification of R. arrhizus using europium as a substitute for americium. The results indicated that in approximately 48 hours R. arrhizus was able for efficient adsorption of 241Am. The pH value of solutions decreased gradually with the uptake of 241Am by R. arrhizus, implying that H+ was released from R. arrhizus via ion-exchange. The biosorption of 241Am by the decomposed cell wall of R. arrhizus was as efficient as by the intact fungus. The adsorption ratio for 241Am by deacylated R. arrhizus dropped, implying that carboxyl functional groups of R. arrhizus play an important role in the biosorption of 241Am. Most of the investigated acidic ions have no significant influence on the adsorption of 241Am, while saturated EDTA can strongly inhibit the biosorption of 241Am by R. arrhizus. When the concentrations of coexistent Eu3+, Nd3+ were 300 times more than that of 241Am, the adsorption ratios would decrease to about 86% from more than 99%. It could be noted by transmission electron microscope (TEM) analysis that the adsorbed Eu is scattered almost in the whole fungus, while Rutherford backscattering spectrometry (RBS) indicated that Ca in R. arrhizus have been replaced by Eu via ion-exchange. The change of the absorption peak structure in the IR spectra implied that there was complexation between metals and microorganism. The results implied that the adsorption mechanism of 241Am by R. arrhizus is very complicated involved ion-exchange, complexation process as well as nonspecific adsorption in the cell wall by static electricity.  相似文献   

4.
Biosorption of 241Am by a fungus A. niger, including the spore and hyphae, was investigated. The preliminary results showed that the adsorption of 241Am by the microorganism was efficient. More than 96% of the total 241Am could be removed from 241Am solutions of 5.6-111 MBq/l (C o) by spore and hyphaeof A. niger, with adsorbed 241Am metal (Q) of 7.2-142.4 MBq/g biomass, and 5.2-106.5 MBq/g, respectively. The biosorption equilibrium was achieved within 1 hour and the optimum pH range was pH 1-3. No obvious effects on 241Am adsorption by the fungus were observed at 10-45 °C, or in solutions containing Au3+ or Ag+, even 2000 times above the 241Am concentration. The 241Am biosorption by the fungus obeys the Freundlich adsorption equation. There was no significant difference between the adsorption behavior of A. nigerspore and hyphae. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
As an important radioisotope in nuclear industry and other fields, 241Am is one of the most serious contamination concerns due to its high radiation toxicity and long half-life. The encouraging biosorption of 241Am from aqueous solutions by free or immobilized Saccharomyces cerevisiae (S. cerevisiae) has been observed in our previous experiments. In this study, the preliminary evaluation on mechanism was further explored via chemical or biological modification of S. cerevisiae, and using europium as a substitute for americium. The results indicated that the culture times of more than 16 hours for S. cerevisiae was suitable and the efficient adsorption of 241Am by the S. cerevisiae was able to achieve. The pH value in solutions decreased gradually with the uptake of 241Am in the S. cerevisiae, implying that H+ released from S. cerevisiae via ion-exchange. The biosorption of 241Am by the decomposed cell wall, protoplasm or cell membrane of S. cerevisiae was same efficient as by the intact fungus. However, the adsorption ratio for 241Am by the deproteinized or deacylated S. cerevisiae dropped obviously, implying that protein or carboxyl functional groups of S. cerevisiaece play an important role in the biosorption of 241Am. Most of the investigated acidic ions have no significant influence on the 241Am adsorption, while the saturated EDTA can strong inhibit the biosorption of 241Am on S. cerevisiae. When the concentrations of coexistent Eu3+, Nd3+ were 100 times more than that of 241Am, the adsorption ratios would decrease to 65% from more than 95%. It could be noted by transmission electron microscope (TEM) analysis that the adsorbed Eu is almost scattered in the whole fungus, while Rutherford backscattering spectrometry (RBS) analysis indicated that Ca in S. cerevisiae have been replaced by Eu via ion-exchange. All the results implied that the adsorption mechanism of 241Am on S. cerevisiae is very complicated and at least involved in ion exchange, complexation process as well as well as nonspecific adsorption in cell wall because of static electricity.  相似文献   

6.
As an important radioisotope in nuclear industry and other fields, 241 Am is one of the most serious contamination concerns due to its high toxicity and long half-life. In order to supply useful reference for disposal of 241Am waste with low-medium radioactivity, the adsorption and migration behavior of 241Am on aerated zone soil were investigated by the static experimental method and column experiments. The results showed that more than 98% of the total 241Am could be adsorbed from 241Am solution of 0.32·10−7−1.1·10−7 mol/l by the soil at pH 4–9. The adsorption of 241Am on the soil was a pH-dependent process at pH<4, but for pH>4, the adsorption rate of 241Am on the soil changed minutely. The adsorption equilibrium was achieved within 24 hours and no significant effect on adsorption of 241Am was observed at liquid-solid ratios of 50:1–500:1. The relationship between concentration of 241Am and adsorption capacities of 241Am can be described by the Freundlich adsorption equation. Adsorption of 241Am on the soil can be inhibited by humic acid, ferric hydroxide colloid, or some anions, such as citric acid anion, saturated EDTA solution, C2O4 2− and CO3 2−. It was also noted that the adsorption rate of 241Am drops in solutions containing Eu3+ or Nd3+, even 0.5 times above the 241Am concentration. A migration distance of 8 mm for 241Am(III) is observed only in the aerated zone soil containing ferric colloid, while a migration distance of less than 2 mm is noted in other soil samples after more than 250 days. All these results indicate that the aerated zone soil is an efficient sorbent for 241Am and can inhibit the migration of 241Am.  相似文献   

7.
A new partial body counter has been installed and calibrated at the Institute of Radiation Hygiene of the Federal Office for Radiation Protection, Munich, Bavaria. The system is especially designed for radionuclides emitting low energy photons such as241 Am and210Pb. In addition, thorium, uranium and daughter products,60Co,137Cs and40K can be detected. The main components of the system are a shielding chamber, 4 high purity low-energy germanium detectors with beryllium windows and the corresponding electronics and software. A LLNL Realistic Phantom is used to calibrate the system. Inactive organs and organs loaded with a known amount of241Am (right lung, left lung, liver) are available to quantify the response of each detector separately. Detector efficiencies are given as function of chest wall thickness (1.7 to 3.4 cm). Lower limits of detection for241Am using a measurement time of 3600 seconds are 6, 7 and 7 Bq for right lung, left lung and liver, respectively. In order to estimate skeleton activities, a skull phantom loaded with241Am is available. For one detector, the lower limit of detection for the skull is 2 Bq.  相似文献   

8.
The multiple isotope material basis set (MIMBS) method for isotope identification combines the material basis set (MBS) model of gamma spectrum attenuation with ordinary response function fitting to identify shielded gamma-emitting isotopes, using low and medium resolution gamma detectors such as NaI and LaBr3. Although MIMBS has been shown to outperform conventional isotope identification algorithms that do not correct for attenuation effects, it has difficulty identifying low energy emitters such as 57Co or 241Am. In this article we examine the use of optimized multiple attenuator thicknesses in generating basis spectra for each isotope to obtain better modeling of the low energy spectrum while simultaneously extending the range of the model to thicker attenuators. The effectiveness of the multiple thickness MIMBS algorithm in improving isotope identification rates compared with the original MIMBS method is demonstrated with analyses of simulated gamma spectra. The identification rates obtained with the MIMBS methods are compared to those obtained using the commercial peak-based ScintiVision NaI analysis software.  相似文献   

9.
The conditions of241Am separation from bone by coprecipitation with BiPO4 were studied. It was found that by coprecipitation with BiPO4 241Am can be separated with high yield from different amount of bone. The main condition of the achievement of a high yield is a low Fe/III/ concentration in solution at americium coprecipitation.  相似文献   

10.
The conditions of241Am separation from urine and feces by coprecipitation with BiPO4 were studied. It was found that by coprecipitation with BiPO4 241Am can be separated with high yield from urine. The yield of separation from feces is diminished due to the presence of Fe.  相似文献   

11.

Kinetics of 152Eu and 241Am extraction by nitrogen-bearing alkyl amino phenol oligomer YaRB and tert-butylthiacalix[4]arene TCA from carbonate-alkaline media was studied. Both extractants efficiently extract americium and europium in pH interval 12–14. The maximum of americium extraction is located at the lower values of pH, compared with europium. YaRB extracts americium and europium faster than TCA, and at the same time, americium is extracted faster than europium by both extractants. In general, thiacalixarene TCA is regarded as more efficient extractant than alkyl amino phenol oligomer YaRB.

  相似文献   

12.
The determination of 241Am in the environment is of importance in monitoring its release and assessing its environmental impact and radiological risk. This paper aims to give an overview about the recent developments and the state-of-art analytical methods for 241Am determination in environmental samples. Thorough discussions are given in this paper covering a wide range of aspects, including sample pre-treatment and pre-concentration methods, chemical separation techniques, source preparation, radiometric and mass spectrometric measurement techniques, speciation analyses, and tracer applications. The paper focuses on some hyphenated separation methods based on different chromatographic resins, which have been developed to achieve high analytical efficiency and sample throughput for the determination of 241Am. The performances of different radiometric and mass spectrometric measurement techniques for 241Am are evaluated and compared. Tracer applications of 241Am in the environment, including speciation analyses of 241Am, and applications in nuclear forensics are also discussed.  相似文献   

13.
Polypropylenimine dendrimer (DAB‐Am‐32, generation 4.0) was converted into a macroinitiator DAB‐Am‐32‐Cl via reaction with 2‐chloropropionyl chloride. Monodisperse nanoparticles containing poly(propylene imine)(NH2)32‐polystyrene were prepared by emulsion atom transfer radical polymerization (ATRP) of styrene (St), using the DAB‐Am‐32‐Cl/CuCl/bpy as initiating system. The structure of macroinitiator was characterized by FTIR spectrum, 1H NMR, and 13C NMR. The structure of poly(propylene imine)(NH2)32‐polystyrene was characterized by FT‐IR spectrum and 1H NMR; the molecular weight and molecular weight distribution of poly(propylene imine)(NH2)32‐polystyrene were characterized by gel permeation chromatograph (GPC). The morphology, size and size distribution of the nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effects of monomer/macroinitiator ratio and surfactant concentration on the size and size distribution of the nanoparticles were investigated. It was found that the diameters of the nanoparticles were smaller than 100 nm (30–80 nm) and monodisperse; moreover, the particle size could be controlled by monomer/macroinitiator ratios and surfactant concentration. With the increasing of the ratio of St/DAB‐Am‐32‐Cl, the number‐average diameter (Dn), weight‐average diameter (Dw) were both increased gradually. With enhancing the surfactant concentration, the measured Dh of the nanoparticles decreased, while the polydispersity increased. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2892–2904, 2009  相似文献   

14.
Determination of 241Am/243Am ratios is required for vanous purposes including assay of Am by isotope dilution techniques. Alpha-spectrometry on electrodeposited sources is a preferred technique for this determination. However, there is an inherent problem of tail contribution which necessitates the use of suitable algorithms to account for the same. Recently, in the frame of a Coordinated Research Program (CRP) of the International Atomic Energy Agency (IAEA), WinALPHA software has been developed which is a combination of an asymmetrical Gaussian for the main part of the peak and a low energy function. Therefore, it was of interest to compare the use of this algorithm with the routinely used method, in our laboratory, based on geometric progression (G. P.) decrease. Since, there are no reference materials available commercially for 241Am/243Am ratios, synthetic mixtures covening a wide range (0.3 to 2.0) of 241Am/243Am α-activity ratios were used and un-ignited electrodeposited sources were prepared for α-spectrometry. The α-spectra obtained using PIPS detector, were evaluated using the two algonthms The 241Am/243Am α-activity ratios obtained were also compared with those determined by thermal ionization mass spectrometry (TIMS). An agreement of about 1% was obtained in the 241Am/243Am ratios determined by the two methods and also by using the two algorithms for α-spectrum evaluation.  相似文献   

15.
Americium sorption by crown-ether-impregnated polymeric sorbents from nitric acid solutions and multicomponent nitrate solutions that model process solutions was studied. Sorption of ballast elements by the unimpregnated Porolas-T support was studied. The sorption coefficients K d of these elements on Porolas-T do not exceed 0.01. Sorption of the same elements by crown-ether-impregnated sorbents was also studied. Dicyclohexano-18-crown-6 (DCH18C6) and its alkyl derivatives were used. Sorption coefficients were determined for all ballast elements. At the final stage of the study, 241Am sorption coefficients of from multi-component solutions were determined. The data obtained signify the utility of crown-ether-impregnated sorbents for recovering 241Am from multicomponent technological solutions.  相似文献   

16.

Following the expression of the need for an americium (Am) standard and particularly for one with a certified americium-243 (243Am) content, the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA)/Direction de l’Energie Nucléaire of Marcoule and the European Commission Joint Research Center in Geel carried out a collaborative project for the production of a certified reference material enriched in 243Am. CEA’s Commission d’ETAblissement des Méthodes d’Analyse organized an interlaboratory comparison on this material prior to the issuing of its certificate. The usefulness of an interlaboratory comparison to assess the measurement capabilities in the field and to confirm the provisional certified values for the amount contents of 243Am, 241Am, total Am, the isotopic composition and the molar mass of Am has been demonstrated. Furthermore this interlaboratory comparison enabled to derive an indicative value for the n(242mAm)/n(243Am) isotope amount ratio.

  相似文献   

17.

This work describes a procedure to improve the quality of an 241Am alpha source obtained by means of electrodeposition. The technique of design of experiments (DoE) was applied in order to perform a multivariate analysis of the experimental variable effects taking into consideration the following: i—amperage, d—cathode–anode distance, t—time and PP—polishing process. A 34−2 fractional design was employed using four experimental factors, three levels per factor, and three response variables were studied: Harea = electrodeposited active area, %R = activity recovery percentage, and Δ1/2 = width at half-height. Thanks to this simple design, 9 experiments were enough, done in triplicate, to discern how Δ1/2 and %R are modified when experimental factors change. Additionally, this work provides tools to perform effect statistical analysis of experimental factors, and to pose linear models applying significant terms. The models obtained were validated by analysis of variance and they were of help to verify the choice of significant factors by means of DoE and to approximate to the optimization of the preparation method of a 241Am alpha source by means of contour plots of Δ1/2 and %R.

  相似文献   

18.
The Hanford Nuclear Site, near Richland, Washington, is developing a method to simultaneously remove chelated 90Sr and 241Am from the liquid phase of high-level nuclear waste using sodium permanganate and cold strontium nitrate. This method has been reported previously for treating diluted waste in the Hanford Waste Treatment and Immobilization facility (WTP) that is currently under construction. This method had not been verified previously for treating the more concentrated waste as it sits in the tank farm. There are a number of logistical advantages to performing this process in the tank farm. Therefore, the present study was undertaken to compare the removal of 90Sr and 241Am in diluted waste (WTP conditions) and more concentrated waste (tank farm conditions). Both diluted and more concentrated waste from Hanford tank AN-107 was treated with 3.0 M Sr(NO3)2 and 3.8 M NaMnO4, at a constant cold chemical to radionuclide ratio. The amount of 90Sr and 241Am removed was monitored through alpha and beta counting. The removal of 90Sr was essentially identical at both levels of dilution. The removal of 241Am was slightly better in the diluted sample than in the tank farm sample, but the difference was not large (77 % versus 67 % removed). These results indicate that it is reasonable to expect this 90Sr and 241Am removal process can be employed in the tank farm.  相似文献   

19.
The complete analysis of the NMR spectrum of CH2Cl.CFBr.CH3 in CCl4 and acetone is given. The long range 4JHH couplings in this molecule differ considerably and surprisingly are both positive. An analysis of the solvent dependence of the couplings enables the rotamer couplings and energies to be obtained. The rotamer energies and their variation with solvent are in accord with quantitative predictions and results from similar halogenated ethanes. The values of the 4JHH couplings can be rationalised in terms of substituent electronegativity effects.  相似文献   

20.
152Eu and 241Am are the most frequently used radiotracers in the separation studies on trivalent minor actinides and lanthanides. In almost all those studies, the determination of 152Eu and 241Am has been based on measuring their γ radiation by using a NaI(Tl) scintillation detector and/or a germanium detector. In this study, based on measuring the β particles and mono-energy electrons from 152Eu and the α particles from 241Am, we provide a new option to simultaneously determine the radioactivities of 152Eu and 241Am by liquid scintillation counting (LSC) with the aid of α/β discrimination. If the count rate ratio of 241Am to 152Eu is within the range of 100:1–1:100, the radioactivities of 152Eu and 241Am in mixed samples can be simultaneously determined by LSC with the errors less than 5 %. In addition, the interferences of 241Am on Eu are divided into two parts: inside and outside the 241Am region of interest. Only if the count rate ratio of 241Am to Eu is more than 10:1, should the latter interference be in consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号